[1] M.Z. Abedeen, M. Sharma, H.S. Kushwaha, R. Gupta, Sensitive enzyme-free electrochemical sensors for the detection of pesticide residues in food and water, TrAC Trends in Analytical Chemistry 176 (2024) 117729.
[2] J. Xue, K. Mao, H. Cao, R. Feng, Z. Chen, W. Du, H. Zhang, Portable sensors equipped with smartphones for organophosphorus pesticides detection, Food Chemistry 434 (2024) 137456.
[3] M. Mehdizadeh, W. Mushtaq, S.A. Siddiqui, S. Ayadi, P. Kaur, S. Yeboah, S. Mazraedoost, D.K. AL-Taey, K. Tampubolon, Herbicide residues in agroecosystems: Fate, detection, and effect on non-target plants, Reviews in Agricultural Science 9 (2021) 157-167.
[4] C.A. Brühl, N. Bakanov, S. Köthe, L. Eichler, M. Sorg, T. Hörren, R. Mühlethaler, G. Meinel, G.U. Lehmann, Direct pesticide exposure of insects in nature conservation areas in Germany, Scientific Reports 11(1) (2021) 24144.
[5] T. Ustuner, A. Sakran, K. Almhemed, Effect of herbicides on living organisms in the ecosystem and available alternative control methods, Int. J. Sci. Res. Publ 10(8) (2020) 633-641.
[6] M. Faramarzi, Z. Avarseji, E. Gholamalipuor Alamdari, F. Taliei, Biodegradation of the Trifluralin Herbicide by Pseudomonas fluorescens, International Journal of Environmental Science and Technology 20(4) (2023) 3591-3598.
[7] P. Jeschke, Recent developments in fluorine‐containing pesticides, Pest Management Science 80(7) (2024) 3065-3087.
[8] N.V. Coleman, D.J. Rich, F.H. Tang, R.W. Vervoort, F. Maggi, Biodegradation and abiotic degradation of trifluralin: a commonly used herbicide with a poorly understood environmental fate, Environmental science & technology 54(17) (2020) 10399-10410.
[9] D. Gonçalves Filho, D.d. Souza, Electrochemical determination of trifluralin herbicide using silver solid amalgam electrode: application in fresh food samples, Journal of the Brazilian Chemical Society 32 (2021) 1456-1466.
[10] C.R.T. Tarley, F.A.C. Suquila, J. Casarin, A.C.G. Junior, M.G. Segatelli, Development of selective preconcentration/clean-up method for imidazolinone herbicides determination in natural water and rice samples by HPLC-PAD using an imazethapyr imprinted poly (vinylimidazole-TRIM), Food chemistry 334 (2021) 127345.
[11] H. Du, Y. Xie, J. Wang, Nanomaterial-sensors for herbicides detection using electrochemical techniques and prospect applications, TrAC Trends in Analytical Chemistry 135 (2021) 116178.
[12] B. Li, Z. Wang, Highly sensitive and recognizable detection for trifluralin with alkyl-decorated fluorescent porous polymers, Chemical Engineering Journal 470 (2023) 144123.
[13] W. Liu, P. Zheng, Y. Xia, F. Li, M. Zhang, A simple AIE probe to pesticide trifluralin residues in aqueous phase: Ultra-fast response, high sensitivity, and quantitative detection utilizing a portable platform, Talanta 269 (2024) 125352.
[14] P. Mohanty, R. Mahapatra, P. Padhi, C.V. Ramana, D.K. Mishra, Ultrasonic cavitation: An approach to synthesize uniformly dispersed metal matrix nanocomposites—A review, Nano-Structures & Nano-Objects 23 (2020) 100475.
[15] M.J. Eskandari, I. Hasanzadeh, Size-controlled synthesis of Fe3O4 magnetic nanoparticles via an alternating magnetic field and ultrasonic-assisted chemical co-precipitation, Materials Science and Engineering: B 266 (2021) 115050.
[16] H. Huang, Y. Zheng, M. Chang, J. Song, L. Xia, C. Wu, W. Jia, H. Ren, W. Feng, Y. Chen, Ultrasound-Based Micro-/Nanosystems for Biomedical Applications, Chemical Reviews 124(13) (2024) 8307-8472.
[17] H. Zhou, J. Han, J. Cuan, Y. Zhou, Responsive luminescent MOF materials for advanced anticounterfeiting, Chemical Engineering Journal 431 (2022) 134170.
[18] G.L. Yang, X.L. Jiang, H. Xu, B. Zhao, Applications of MOFs as luminescent sensors for environmental pollutants, Small 17(22) (2021) 2005327.
[19] S. Liu, J. Zhou, X. Yuan, J. Xiong, M.-H. Zong, X. Wu, W.-Y. Lou, A dual-mode sensing platform based on metal–organic framework for colorimetric and ratiometric fluorescent detection of organophosphorus pesticide, Food Chemistry 432 (2024) 137272.
[20] R. Shokri, M. Amjadi, J. Manzoori, A chemiluminescent probe for highly sensitive detection of trifluralin based on cobalt ion-complexed boron nitride quantum dots as efficient nanocatalysts, Microchemical Journal 181 (2022) 107759.
[21] M. Rani, A. H. Bandegharaei, U. Shanker, Pesticides removal and their detection in real samples using green synthesized nanocomposites of biogenic quantum dots and metal oxides: A comprehensive review on recent updates, Journal of Molecular Liquids 413 (2024) 125921.
[22] T.V. Huynh, N.T.N. Anh, W. Darmanto, R.-A. Doong, Erbium-doped graphene quantum dots with up-and down-conversion luminescence for effective detection of ferric ions in water and human serum, Sensors and Actuators B: Chemical 328 (2021) 129056.
[23] L. Yang, Y. Fu, F. Ye, Two luminescent dye@MOFs systems as dual-emitting platforms for efficient pesticides detection, Journal of Hazardous Materials 381 (2020) 120966.
[24] R. Liu, P. Zheng, Y. Xia, F. Li, M. Zhang, A simple AIE probe to pesticide trifluralin residues in aqueous phase: Ultra-fast response, high sensitivity, and quantitative detection utilizing a portable platform, Talanta 181 (2024) 125352.
[25] A. Kazemi, F. Moghadaskhou, M.A. Pordsari, F. Manteghi, A. Tadjarodi, A. Ghaemi, Enhanced CO2 capture potential of UiO-66-NH2 synthesized by sonochemical method: experimental findings and performance evaluation, Scientific Reports 13(1) (2023) 19891.
[26] J. Liu, S.-l. Jiang, Q. Zhang, Doping copper ions in a metal-organic framework (UiO-66-NH2): Location effect examined by ultrafast spectroscopy, Chinese Journal of Chemical Physics 33(4) (2020) 394-400.
[27] C.L. Luu, T.T. Van Nguyen, T. Nguyen, T.C. Hoang, Synthesis, characterization and adsorption ability of UiO-66-NH2, Advances in Natural Sciences: Nanoscience and Nanotechnology 6(2) (2015) 025004.
[28] H. Zhu, J. Huang, Q. Zhou, Z. Lv, C. Li, G. Hu, Enhanced luminescence of NH2-UiO-66 for selectively sensing fluoride anion in water medium, Journal of Luminescence 208 (2019) 67-74.
[29] J. Liu, X. Wang, Y. Zhao, Y. Xu, Y. Pan, S. Feng, J. Liu, X. Huang, H. Wang, Nh3 plasma functionalization of UiO-66-NH2 for highly enhanced selective fluorescence detection of u (vi) in water, Analytical Chemistry 94(28) (2022) 10091-10100.