سنتز نانو حسگر لومینسانسی پلیمر کوئوردیناسیونی برپایه زیرکونیوم جهت شناسایی علف کش تری فلورالین

نوع مقاله : پژوهشی اصیل

نویسنده

گروه شیمی، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران.

چکیده
موضوع تحقیق: حسگرهای نوری برپایه پلیمرهای کوئوردیناسیونی متخلخل یا چارچوب­های فلز-آلی (MOF) با ویژگی لومینسانسی با حساسیت و گزینش­پذیری بالا به عنوان ابزارهای شناسایی مهم در تحقیقات شیمیایی و زیست محیطی به حساب می­آیند. امروزه آفت­کش­ها/ علف­کش­ها به دلیل کاربردهای گسترده­ به منظور محافظت از منابع غذایی پرکاربرد جامعه بشری در برابر آفات و حفظ غنی بودن زمین­های قابل کشت در برابر علف­های هرز و موارد غیر ضروری در صنایع کشاورزی مورد توجه قرار گرفته می­شوند. مقدار زیاد یا مزمن این ترکیبات می­تواند سطوح بالایی از سمیت را در انسان، حیوانات و گیاهان ایجاد کرده و زندگی موجودات را به خطر اندازد. از این رو، شناسایی این دسته از ترکیبات از اهمیت بالایی برخوردار است.

روش تحقیق: در این مطالعه نانو حسگر فلورسانسی چارچوب فلز-آلی UiO-66-NH2 (1) جهت شناسایی علف­کش تری­فلورالین (TFA) از روش اولتراسونیک سنتز شد. ویژگی­های نانو حسگر 1 بوسیله آنالیزهای پراش اشعه ایکس پودری، تبدیل فوریه مادون قرمز، آنالیز حرارتی، طیف­های فتولومینسانس، اسپکتروفتومتری فرابنفش مرئی، میکروسکوپ الکترونی روبشی شناسایی شد. نشر آبی ترکیب 1 ناشی از انتقالات الکترونی n-π* لیگاند 2-آمینو ترفتالیک اسید جهت شناسایی TFA مورد بررسی قرار گرفت. نتایج تجربی نشان می­دهد نشر فلورسانس آبی نانو حسگر 1 در حضور مولکول TFA و افزایش تدریجی غلظت آن، خاموش می­شود.

یافته­های تحقیق: نانو حسگر 1 در تعیین TFA با پاسخ سریع، پایدار،گزینش­پذیری با حساسیت بالایی همراه است. با توجه به همبستگی خطی خوب پاسخ فلورسانس نانو حسگر 1 به غلظت TFA در محدوده µM 10 تا 100 و کمترین حد تشخیص (LOD) برابر µM 32/2 ، نشان‌دهنده قابل‌اطمینان و کاربردی بودن نانو حسگر سنتزی در شناسایی علف­کش TFA است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Synthesis of Zirconium-Based Coordination Polymer Luminescence Nanosensor for Detection of Trifluralin Herbicide

نویسنده English

Ameneh Porgham Daryasari
Department of chemistry, Lahijan Branch, Islamic Azad University, Lahijan. Iran.
چکیده English

Research Subject: Optical sensors based on porous coordination polymers or metal-organic frameworks (MOF) with luminescent properties with high sensitivity and selectivity are considered as important identification tools in chemical and environmental research. Today, pesticides/herbicides are widely used in order to protect the widely used food resources of human society against pests and to preserve the richness of arable land against weeds and unnecessary things in industries. Agriculture is considered. A large or chronic amount of these compounds can cause high levels of toxicity in humans, animals and plants and endanger the lives of organisms. Therefore, the identification of this group of compounds is of great importance.

Research Approach: In this study, metal-organic framework UiO-66-NH2 fluorescence nanosensor (1) was synthesized to identify the herbicide Trifluralin (TFA) by ultrasonic method. The properties of nanosensor 1 were identified by X-ray powder diffraction analysis, infrared Fourier transform, thermal analysis, photoluminescence spectra, ultraviolet-visible spectrophotometry, and scanning electron microscopy. The blue emission of compound 1 caused by n-π* electron transfers of 2-aminoterephthalic acid ligand was investigated to identify TFA. The experimental results show that the blue fluorescence emission of nanosensor 1 is turned off in the presence of TFA molecule and the gradual increase in its concentration.

Main Results: Nanosensor 1 is associated with fast, stable, selectable response and high sensitivity in determining TFA. Considering the good linear correlation of the fluorescence response of nanosensor 1 to TFA concentration in the range of 10 to 100 µM and the lowest detection limit (LOD) equal to 2.32 µM, it indicates the reliability and practicality of the synthetic nanosensor in identifying TFA herbicide.

کلیدواژه‌ها English

Porous Coordination Polymers
Optical Nanosensors
Trifluoralin
Ultrasonic Synthesis
[1] M.Z. Abedeen, M. Sharma, H.S. Kushwaha, R. Gupta, Sensitive enzyme-free electrochemical sensors for the detection of pesticide residues in food and water, TrAC Trends in Analytical Chemistry 176 (2024) 117729.
[2] J. Xue, K. Mao, H. Cao, R. Feng, Z. Chen, W. Du, H. Zhang, Portable sensors equipped with smartphones for organophosphorus pesticides detection, Food Chemistry 434 (2024) 137456.
[3] M. Mehdizadeh, W. Mushtaq, S.A. Siddiqui, S. Ayadi, P. Kaur, S. Yeboah, S. Mazraedoost, D.K. AL-Taey, K. Tampubolon, Herbicide residues in agroecosystems: Fate, detection, and effect on non-target plants, Reviews in Agricultural Science 9 (2021) 157-167.
[4] C.A. Brühl, N. Bakanov, S. Köthe, L. Eichler, M. Sorg, T. Hörren, R. Mühlethaler, G. Meinel, G.U. Lehmann, Direct pesticide exposure of insects in nature conservation areas in Germany, Scientific Reports 11(1) (2021) 24144.
[5] T. Ustuner, A. Sakran, K. Almhemed, Effect of herbicides on living organisms in the ecosystem and available alternative control methods, Int. J. Sci. Res. Publ 10(8) (2020) 633-641.
[6] M. Faramarzi, Z. Avarseji, E. Gholamalipuor Alamdari, F. Taliei, Biodegradation of the Trifluralin Herbicide by Pseudomonas fluorescens, International Journal of Environmental Science and Technology 20(4) (2023) 3591-3598.
[7] P. Jeschke, Recent developments in fluorine‐containing pesticides, Pest Management Science 80(7) (2024) 3065-3087.
[8] N.V. Coleman, D.J. Rich, F.H. Tang, R.W. Vervoort, F. Maggi, Biodegradation and abiotic degradation of trifluralin: a commonly used herbicide with a poorly understood environmental fate, Environmental science & technology 54(17) (2020) 10399-10410.
[9] D. Gonçalves Filho, D.d. Souza, Electrochemical determination of trifluralin herbicide using silver solid amalgam electrode: application in fresh food samples, Journal of the Brazilian Chemical Society 32 (2021) 1456-1466.
[10] C.R.T. Tarley, F.A.C. Suquila, J. Casarin, A.C.G. Junior, M.G. Segatelli, Development of selective preconcentration/clean-up method for imidazolinone herbicides determination in natural water and rice samples by HPLC-PAD using an imazethapyr imprinted poly (vinylimidazole-TRIM), Food chemistry 334 (2021) 127345.
[11] H. Du, Y. Xie, J. Wang, Nanomaterial-sensors for herbicides detection using electrochemical techniques and prospect applications, TrAC Trends in Analytical Chemistry 135 (2021) 116178.
[12] B. Li, Z. Wang, Highly sensitive and recognizable detection for trifluralin with alkyl-decorated fluorescent porous polymers, Chemical Engineering Journal 470 (2023) 144123.
[13] W. Liu, P. Zheng, Y. Xia, F. Li, M. Zhang, A simple AIE probe to pesticide trifluralin residues in aqueous phase: Ultra-fast response, high sensitivity, and quantitative detection utilizing a portable platform, Talanta 269 (2024) 125352.
[14] P. Mohanty, R. Mahapatra, P. Padhi, C.V. Ramana, D.K. Mishra, Ultrasonic cavitation: An approach to synthesize uniformly dispersed metal matrix nanocomposites—A review, Nano-Structures & Nano-Objects 23 (2020) 100475.
[15] M.J. Eskandari, I. Hasanzadeh, Size-controlled synthesis of Fe3O4 magnetic nanoparticles via an alternating magnetic field and ultrasonic-assisted chemical co-precipitation, Materials Science and Engineering: B 266 (2021) 115050.
[16] H. Huang, Y. Zheng, M. Chang, J. Song, L. Xia, C. Wu, W. Jia, H. Ren, W. Feng, Y. Chen, Ultrasound-Based Micro-/Nanosystems for Biomedical Applications, Chemical Reviews 124(13) (2024) 8307-8472.
[17] H. Zhou, J. Han, J. Cuan, Y. Zhou, Responsive luminescent MOF materials for advanced anticounterfeiting, Chemical Engineering Journal 431 (2022) 134170.
[18] G.L. Yang, X.L. Jiang, H. Xu, B. Zhao, Applications of MOFs as luminescent sensors for environmental pollutants, Small 17(22) (2021) 2005327.
[19] S. Liu, J. Zhou, X. Yuan, J. Xiong, M.-H. Zong, X. Wu, W.-Y. Lou, A dual-mode sensing platform based on metal–organic framework for colorimetric and ratiometric fluorescent detection of organophosphorus pesticide, Food Chemistry 432 (2024) 137272.
[20] R. Shokri, M. Amjadi, J. Manzoori, A chemiluminescent probe for highly sensitive detection of trifluralin based on cobalt ion-complexed boron nitride quantum dots as efficient nanocatalysts, Microchemical Journal 181 (2022) 107759.
[21] M. Rani, A. H. Bandegharaei, U. Shanker, Pesticides removal and their detection in real samples using green synthesized nanocomposites of biogenic quantum dots and metal oxides: A comprehensive review on recent updates, Journal of Molecular Liquids 413 (2024) 125921.
[22] T.V. Huynh, N.T.N. Anh, W. Darmanto, R.-A. Doong, Erbium-doped graphene quantum dots with up-and down-conversion luminescence for effective detection of ferric ions in water and human serum, Sensors and Actuators B: Chemical 328 (2021) 129056.
[23] L. Yang, Y. Fu, F. Ye, Two luminescent dye@MOFs systems as dual-emitting platforms for efficient pesticides detection, Journal of Hazardous Materials 381 (2020) 120966.
[24] R. Liu, P. Zheng, Y. Xia, F. Li, M. Zhang, A simple AIE probe to pesticide trifluralin residues in aqueous phase: Ultra-fast response, high sensitivity, and quantitative detection utilizing a portable platform, Talanta 181 (2024) 125352.
[25] A. Kazemi, F. Moghadaskhou, M.A. Pordsari, F. Manteghi, A. Tadjarodi, A. Ghaemi, Enhanced CO2 capture potential of UiO-66-NH2 synthesized by sonochemical method: experimental findings and performance evaluation, Scientific Reports 13(1) (2023) 19891.
[26] J. Liu, S.-l. Jiang, Q. Zhang, Doping copper ions in a metal-organic framework (UiO-66-NH2): Location effect examined by ultrafast spectroscopy, Chinese Journal of Chemical Physics 33(4) (2020) 394-400.
[27] C.L. Luu, T.T. Van Nguyen, T. Nguyen, T.C. Hoang, Synthesis, characterization and adsorption ability of UiO-66-NH2, Advances in Natural Sciences: Nanoscience and Nanotechnology 6(2) (2015) 025004.
[28] H. Zhu, J. Huang, Q. Zhou, Z. Lv, C. Li, G. Hu, Enhanced luminescence of NH2-UiO-66 for selectively sensing fluoride anion in water medium, Journal of Luminescence 208 (2019) 67-74.
[29] J. Liu, X. Wang, Y. Zhao, Y. Xu, Y. Pan, S. Feng, J. Liu, X. Huang, H. Wang, Nh3 plasma functionalization of UiO-66-NH2 for highly enhanced selective fluorescence detection of u (vi) in water, Analytical Chemistry 94(28) (2022) 10091-10100.