[1] S. Miri, M. Omidkhah, A. Ebadi Amooghin, T. Matsuura, Membrane-based gas separation accelerated by quaternary mixed matrix membranes, J. Nat. Gas Sci. Eng. 84 (2020) 103655. https://doi.org/10.1016/j.jngse.2020.103655.
[2] S. Kalantari, M. Omidkhah, A. Ebadi Amooghin, T. Matsuura, Superior interfacial design in ternary mixed matrix membranes to enhance the CO2 separation performance, Appl. Mater. Today. 18 (2020) 100491. https://doi.org/10.1016/j.apmt.2019.100491.
[3] S.Q. Cheng, Q. Lin, S.L. Li, Y.X. Guo, X. Le Han, Y. Sun, Y. Liu, Recent advancements in supramolecular macrocycles for two-dimensional membranes for separations, Green Chem. (2023). https://doi.org/10.1039/d3gc01996a.
[4] D.S. Bakhtin, S.E. Sokolov, I.L. Borisov, V. V. Volkov, A. V. Volkov, V.O. Samoilov, Mitigation of Physical Aging of Polymeric Membrane Materials for Gas Separation: A Review, Membranes (Basel). 13 (2023) 1–17. https://doi.org/10.3390/membranes13050519.
[5] Y. Dai, Z. Niu, W. Luo, Y. Wang, P. Mu, J. Li, A review on the recent advances in composite membranes for CO2 capture processes, Sep. Purif. Technol. 307 (2023). https://doi.org/10.1016/j.seppur.2022.122752.
[6] Z. Farashi, S. Azizi, M. Rezaei-Dasht Arzhandi, Z. Noroozi, N. Azizi, Improving CO2/CH4 separation efficiency of Pebax-1657 membrane by adding Al2O3 nanoparticles in its matrix, J. Nat. Gas Sci. Eng. 72 (2019) 103019. https://doi.org/10.1016/j.jngse.2019.103019.
[7] S. Khoshhal Salestan, K. Pirzadeh, A. Rahimpour, R. Abedini, Poly (ether-block amide) thin-film membranes containing functionalized MIL-101 MOFs for efficient separation of CO2/CH4, J. Environ. Chem. Eng. 9 (2021) 105820. https://doi.org/10.1016/j.jece.2021.105820.
[8] I. Ahmad, A.B. Alayande, H. Jee, Z. Wang, Y.J. Park, K.S. Im, S.Y. Nam, T.H. Bae, E. Yang, Recent progress of MXene-based membranes for high-performance and efficient gas separation, Diam. Relat. Mater. 135 (2023). https://doi.org/10.1016/j.diamond.2023.109883.
[9] H. Yang, S. Liang, P. Zhang, X. Zhang, P. Lu, Y. Liu, X. Cao, Y. Li, Q. Wang, Improved CO2 separation performance of mixed matrix membranes via expanded layer double hydroxides and methanol post-treatment, J. Memb. Sci. 670 (2023) 1–11. https://doi.org/10.1016/j.memsci.2023.121345.
[10] Y. Zhang, Y. Wang, H. Xia, P. Gao, Y. Cao, H. Jin, Y. Li, A hybrid ZIF-8/ZIF-62 glass membrane for gas separation, Chem. Commun. 58 (2022) 9548–9551. https://doi.org/10.1039/d2cc03179e.
[11] G. Clarizia, P. Bernardo, Polyether Block Amide as Host Matrix for Nanocomposite Membranes Applied to Different Sensitive Fields, Membranes (Basel). 12 (2022). https://doi.org/10.3390/membranes12111096.
[12] K.C. Wong, P.S. Goh, A.F. Ismail, Enhancing hydrogen gas separation performance of thin film composite membrane through facilely blended polyvinyl alcohol and PEBAX, Int. J. Hydrogen Energy. 46 (2021) 19737–19748. https://doi.org/10.1016/j.ijhydene.2020.09.079.
[13] R. Ebadi, H. Maghsoudi, A.A. Babaluo, Fabrication and characterization of Pebax-1657 mixed matrix membrane loaded with Si-CHA zeolite for CO2 separation from CH4, J. Nat. Gas Sci. Eng. 90 (2021) 103947. https://doi.org/10.1016/j.jngse.2021.103947.
[14] Z.X. Wang, W.S. Sun, W.H. Zhang, S. Li, M.J. Yin, Q.F. An, Construction of high-performance thin-film composite membrane for CO2 separation via interface engineering, Sep. Purif. Technol. 322 (2023). https://doi.org/10.1016/j.seppur.2023.124348.
[15] J. Cheng, C. Yang, W. Hou, N. Liu, R. Xia, Z. Chen, H. Zhang, J. Liu, Carbon nanotubes grown on ZIF-L(Zn@Co) surface improved CO2 permeability of mixed matrix membranes, J. Memb. Sci. 670 (2023). https://doi.org/10.1016/j.memsci.2023.121356.
[16] A.N. Vasileiou, G. V. Theodorakopoulos, D.S. Karousos, M. Bouroushian, A.A. Sapalidis, E.P. Favvas, Nanocarbon-Based Mixed Matrix Pebax-1657 Flat Sheet Membranes for CO2/CH4 Separation, Membranes (Basel). 13 (2023). https://doi.org/10.3390/membranes13050470.
[17] H. Sanaeepur, R. Ahmadi, M. Sinaei, A. Kargari, Pebax-modified cellulose acetate membrane for CO 2 /N 2 separation, J. Membr. Sci. Res. 5 (2019) 25–32. https://doi.org/10.22079/JMSR.2018.85813.1190.
[18] N. Azizi, M. Reza, H. Mohammad, M. Zarei, Study of CO 2 and CH 4 Permeation Properties through Prepared and Characterized Blended Pebax-2533 / PEG-200 Membranes, (2017).
[19] A. Hatami, I. Salahshoori, N. Rashidi, D. Nasirian, The effect of ZIF-90 particle in Pebax/Psf composite membrane on the transport properties of CO2, CH4 and N2 gases by Molecular Dynamics Simulation method, Chinese J. Chem. Eng. 28 (2020) 2267–2284. https://doi.org/10.1016/j.cjche.2019.12.011.
[20] M. Klepić, K. Setničková, M. Lanč, M. Žák, P. Izák, M. Dendisová, A. Fuoco, J.C. Jansen, K. Friess, Permeation and sorption properties of CO2-selective blend membranes based on polyvinyl alcohol (PVA) and 1-ethyl-3-methylimidazolium dicyanamide ([EMIM][DCA]) ionic liquid for effective CO2/H2 separation, J. Memb. Sci. 597 (2020) 117623. https://doi.org/10.1016/j.memsci.2019.117623.
[21] C. Wang, J. Wu, P. Cheng, L. Xu, S. Zhang, Nanocomposite polymer blend membrane molecularly re-engineered with 2D metal-organic framework nanosheets for efficient membrane CO2 capture, J. Memb. Sci. 685 (2023). https://doi.org/10.1016/j.memsci.2023.121950.
[22] M. Kheirtalab, R. Abedini, M. Ghorbani, A novel ternary mixed matrix membrane comprising polyvinyl alcohol (PVA)-modified poly (ether-block-amide)(Pebax®1657)/graphene oxide nanoparticles for CO2 separation, Process Saf. Environ. Prot. 144 (2020) 208–224. https://doi.org/10.1016/j.psep.2020.07.027.
[23] L. Martínez-Izquierdo, M. Malankowska, J. Sánchez-Laínez, C. Téllez, J. Coronas, Poly(ether-block-amide) copolymer membrane for CO2/N2 separation: The influence of the casting solution concentration on its morphology, thermal properties and gas separation performance, R. Soc. Open Sci. 6 (2019). https://doi.org/10.1098/rsos.190866.
[24] M. Vatani, A. Raisi, G. Pazuki, Mixed matrix membrane of ZSM-5/poly (ether-block-amide)/polyethersulfone for pervaporation separation of ethyl acetate from aqueous solution, Microporous Mesoporous Mater. 263 (2018) 257–267. https://doi.org/10.1016/j.micromeso.2017.12.030.
[25] S. Sridhar, S. Kalyani, Y.V.L. Ravikumar, T.S.V.N. Muralikrishna, Performance of composite membranes of poly(ether-block-amide) for dehydration of rthylene glycol and ethanol, Sep. Sci. Technol. 45 (2010) 322–330. https://doi.org/10.1080/01496390903409468.
[26] D. Nobakht, R. Abedini, Improved gas separation performance of Pebax®1657 membrane modified by poly-alcoholic compounds, J. Environ. Chem. Eng. 10 (2022). https://doi.org/10.1016/j.jece.2022.107568.
[27] R. Ghanbari, A. Marandi, E. Nazarzadeh, Journal of Environmental Chemical Engineering Development of melamine-based covalent organic framework-MOF pearl-like heterostructure integrated poly ( ether- block -amide ) for CO 2 / CH 4 separation, J. Environ. Chem. Eng. 11 (2023).
[28] D. Chen, L. Li, R. Semiat, X. He, Process Parametric Investigation of Graphene-Oxide-Embedded Composite Membranes for Boosting CO2/N2 Separation, Energy and Fuels. 37 (2023) 11187–11196. https://doi.org/10.1021/acs.energyfuels.3c01927.
[29] J. Luo, R. Guo, M. Zhang, J. Li, Gas permeation properties of polymer membranes containing pendant tertiary amine groups, High Perform. Polym. 28 (2016) 1005–1014. https://doi.org/10.1177/0954008315620287.
[30] B. Satilmis, M. Lanč, A. Fuoco, C. Rizzuto, E. Tocci, P. Bernardo, G. Clarizia, E. Esposito, M. Monteleone, M. Dendisová, K. Friess, P.M. Budd, J.C. Jansen, Temperature and pressure dependence of gas permeation in amine-modified PIM-1, J. Memb. Sci. 555 (2018) 483–496. https://doi.org/10.1016/j.memsci.2018.03.039.
[31] Gholamreza Alizadeh, Reza Abedini, Ahmad Rahimpour, Ahmad Rahimpour, Effect of MIL-53 metal organic frameworks on performance of Pebax/PEG mixed matrix membrane for CO 2/CH4 separation, Chem. - Polym. Eng. (2019) 61–79.
[32] H. Hassanzadeh, R. Abedini, M. Ghorbani, CO2 Separation over N2 and CH4 Light Gases in Sorbitol-Modified Poly(ether-block-amide) (Pebax 2533) Membrane, Ind. Eng. Chem. Res. 61 (2022) 13669–13682. https://doi.org/10.1021/acs.iecr.2c02760.
[33] M. Isanejad, N. Azizi, T. Mohammadi, Pebax membrane for CO2/CH4 separation: Effects of various solvents on morphology and performance, J. Appl. Polym. Sci. 134 (2017) 1–9. https://doi.org/10.1002/app.44531.
[34] X. Feng, Z. Qin, Q. Lai, Z. Zhang, Z.W. Shao, W. Tang, W. Wu, Z. Dai, C. Liu, Mixed-matrix membranes based on novel hydroxamate metal–organic frameworks with two-dimensional layers for CO2/N2 separation, Sep. Purif. Technol. 305 (2023). https://doi.org/10.1016/j.seppur.2022.122476.
[35] M.G. Mina Kheirtalab, Reza Abedini, A novel ternary mixed matrix membrane comprising polyvinyl alcohol (PVA)-modified poly (ether-block-amide)(Pebax®1657)/graphene oxide nanoparticles for CO2 separation, (2022) 100788. https://doi.org/10.1016/j.cogsc.2023.100788.
[36] M.G. Mina Kheirtalab, Reza Abedini, Investigation of performance of Pebax/ Poly(vinyl alcohol) blend membrane for carbon dioxide separation from nitrogen Mina, 3 (2020) 55–69.
[37] S. Khoshhal Salestan, K. Pirzadeh, A. Rahimpour, R. Abedini, Poly (ether-block amide) thin-film membranes containing functionalized MIL-101 MOFs for efficient separation of CO2/CH4, J. Environ. Chem. Eng. 9 (2021) 1–11. https://doi.org/10.1016/j.jece.2021.105820.