Fabrication of nanocomposite membrane based on polyether block amide/polyvinyl alcohol filled with magnesium oxide nanoparticles in order to investigate selective permeability properties

Document Type : Original Research

Authors

1 Islamic Azad University Shahreza

2 Shahreza Islamic Azad University

Abstract
Hypothesis: One potential method for improving nanocomposite mixed matrix membranes is through the use of nanoparticles and compounds containing hydroxyl and carboxyl groups, which may aid in the penetration of CO2 gas. In this study, we investigated the selectivity and permeability of a polyether block amide/polyvinyl alcohol (Pebax/PVA) nanocomposite membrane containing magnesium oxide (MgO) nanoparticles. Previous research has shown that the addition of MgO to the Pebax/PVA matrix can increase CO2 permeability by creating an intermolecular space.

Methods: Prepared a Pebax/PVA nanocomposite membrane with a weight ratio of 80:20, containing 10% MgO nanoparticles, through a solution casting method. Evaluated the performance of the Pebax/PVA/MgO nanocomposite membrane for separating CH4 and CO2 gases using various tests.

Findings: Characterized the membranes through Fourier transform infrared (FTIR), X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM) tests. FESEM images showed increased surface roughness with the addition of nanoparticles, and the nanoparticles were well dispersed within the polymer matrix. XRD analysis indicated that MgO nanoparticles had more interaction with PVA chains than with Pebax chains, and peaks at 42° and 62° regions were formed due to the placement of MgO nanoparticles among the polymer chains. We studied various parameters, including polyvinyl alcohol and MgO nanoparticle content, pressure, and temperature, as independent variables and examined their effects on the permeability of CH4 and CO2 gases. We measured the permeability of the constructed membranes and found that the addition of MgO significantly increased the permeability of CH4 and CO2.

Keywords

Subjects


[1] S. Miri, M. Omidkhah, A. Ebadi Amooghin, T. Matsuura, Membrane-based gas separation accelerated by quaternary mixed matrix membranes, J. Nat. Gas Sci. Eng. 84 (2020) 103655. https://doi.org/10.1016/j.jngse.2020.103655.
[2] S. Kalantari, M. Omidkhah, A. Ebadi Amooghin, T. Matsuura, Superior interfacial design in ternary mixed matrix membranes to enhance the CO2 separation performance, Appl. Mater. Today. 18 (2020) 100491. https://doi.org/10.1016/j.apmt.2019.100491.
[3] S.Q. Cheng, Q. Lin, S.L. Li, Y.X. Guo, X. Le Han, Y. Sun, Y. Liu, Recent advancements in supramolecular macrocycles for two-dimensional membranes for separations, Green Chem. (2023). https://doi.org/10.1039/d3gc01996a.
[4] D.S. Bakhtin, S.E. Sokolov, I.L. Borisov, V. V. Volkov, A. V. Volkov, V.O. Samoilov, Mitigation of Physical Aging of Polymeric Membrane Materials for Gas Separation: A Review, Membranes (Basel). 13 (2023) 1–17. https://doi.org/10.3390/membranes13050519.
[5] Y. Dai, Z. Niu, W. Luo, Y. Wang, P. Mu, J. Li, A review on the recent advances in composite membranes for CO2 capture processes, Sep. Purif. Technol. 307 (2023). https://doi.org/10.1016/j.seppur.2022.122752.
[6] Z. Farashi, S. Azizi, M. Rezaei-Dasht Arzhandi, Z. Noroozi, N. Azizi, Improving CO2/CH4 separation efficiency of Pebax-1657 membrane by adding Al2O3 nanoparticles in its matrix, J. Nat. Gas Sci. Eng. 72 (2019) 103019. https://doi.org/10.1016/j.jngse.2019.103019.
[7] S. Khoshhal Salestan, K. Pirzadeh, A. Rahimpour, R. Abedini, Poly (ether-block amide) thin-film membranes containing functionalized MIL-101 MOFs for efficient separation of CO2/CH4, J. Environ. Chem. Eng. 9 (2021) 105820. https://doi.org/10.1016/j.jece.2021.105820.
[8] I. Ahmad, A.B. Alayande, H. Jee, Z. Wang, Y.J. Park, K.S. Im, S.Y. Nam, T.H. Bae, E. Yang, Recent progress of MXene-based membranes for high-performance and efficient gas separation, Diam. Relat. Mater. 135 (2023). https://doi.org/10.1016/j.diamond.2023.109883.
[9] H. Yang, S. Liang, P. Zhang, X. Zhang, P. Lu, Y. Liu, X. Cao, Y. Li, Q. Wang, Improved CO2 separation performance of mixed matrix membranes via expanded layer double hydroxides and methanol post-treatment, J. Memb. Sci. 670 (2023) 1–11. https://doi.org/10.1016/j.memsci.2023.121345.
[10] Y. Zhang, Y. Wang, H. Xia, P. Gao, Y. Cao, H. Jin, Y. Li, A hybrid ZIF-8/ZIF-62 glass membrane for gas separation, Chem. Commun. 58 (2022) 9548–9551. https://doi.org/10.1039/d2cc03179e.
[11] G. Clarizia, P. Bernardo, Polyether Block Amide as Host Matrix for Nanocomposite Membranes Applied to Different Sensitive Fields, Membranes (Basel). 12 (2022). https://doi.org/10.3390/membranes12111096.
[12] K.C. Wong, P.S. Goh, A.F. Ismail, Enhancing hydrogen gas separation performance of thin film composite membrane through facilely blended polyvinyl alcohol and PEBAX, Int. J. Hydrogen Energy. 46 (2021) 19737–19748. https://doi.org/10.1016/j.ijhydene.2020.09.079.
[13] R. Ebadi, H. Maghsoudi, A.A. Babaluo, Fabrication and characterization of Pebax-1657 mixed matrix membrane loaded with Si-CHA zeolite for CO2 separation from CH4, J. Nat. Gas Sci. Eng. 90 (2021) 103947. https://doi.org/10.1016/j.jngse.2021.103947.
[14] Z.X. Wang, W.S. Sun, W.H. Zhang, S. Li, M.J. Yin, Q.F. An, Construction of high-performance thin-film composite membrane for CO2 separation via interface engineering, Sep. Purif. Technol. 322 (2023). https://doi.org/10.1016/j.seppur.2023.124348.
[15] J. Cheng, C. Yang, W. Hou, N. Liu, R. Xia, Z. Chen, H. Zhang, J. Liu, Carbon nanotubes grown on ZIF-L(Zn@Co) surface improved CO2 permeability of mixed matrix membranes, J. Memb. Sci. 670 (2023). https://doi.org/10.1016/j.memsci.2023.121356.
[16] A.N. Vasileiou, G. V. Theodorakopoulos, D.S. Karousos, M. Bouroushian, A.A. Sapalidis, E.P. Favvas, Nanocarbon-Based Mixed Matrix Pebax-1657 Flat Sheet Membranes for CO2/CH4 Separation, Membranes (Basel). 13 (2023). https://doi.org/10.3390/membranes13050470.
[17] H. Sanaeepur, R. Ahmadi, M. Sinaei, A. Kargari, Pebax-modified cellulose acetate membrane for CO 2 /N 2 separation, J. Membr. Sci. Res. 5 (2019) 25–32. https://doi.org/10.22079/JMSR.2018.85813.1190.
[18] N. Azizi, M. Reza, H. Mohammad, M. Zarei, Study of CO 2 and CH 4 Permeation Properties through Prepared and Characterized Blended Pebax-2533 / PEG-200 Membranes, (2017).
[19] A. Hatami, I. Salahshoori, N. Rashidi, D. Nasirian, The effect of ZIF-90 particle in Pebax/Psf composite membrane on the transport properties of CO2, CH4 and N2 gases by Molecular Dynamics Simulation method, Chinese J. Chem. Eng. 28 (2020) 2267–2284. https://doi.org/10.1016/j.cjche.2019.12.011.
[20] M. Klepić, K. Setničková, M. Lanč, M. Žák, P. Izák, M. Dendisová, A. Fuoco, J.C. Jansen, K. Friess, Permeation and sorption properties of CO2-selective blend membranes based on polyvinyl alcohol (PVA) and 1-ethyl-3-methylimidazolium dicyanamide ([EMIM][DCA]) ionic liquid for effective CO2/H2 separation, J. Memb. Sci. 597 (2020) 117623. https://doi.org/10.1016/j.memsci.2019.117623.
[21] C. Wang, J. Wu, P. Cheng, L. Xu, S. Zhang, Nanocomposite polymer blend membrane molecularly re-engineered with 2D metal-organic framework nanosheets for efficient membrane CO2 capture, J. Memb. Sci. 685 (2023). https://doi.org/10.1016/j.memsci.2023.121950.
[22] M. Kheirtalab, R. Abedini, M. Ghorbani, A novel ternary mixed matrix membrane comprising polyvinyl alcohol (PVA)-modified poly (ether-block-amide)(Pebax®1657)/graphene oxide nanoparticles for CO2 separation, Process Saf. Environ. Prot. 144 (2020) 208–224. https://doi.org/10.1016/j.psep.2020.07.027.
[23] L. Martínez-Izquierdo, M. Malankowska, J. Sánchez-Laínez, C. Téllez, J. Coronas, Poly(ether-block-amide) copolymer membrane for CO2/N2 separation: The influence of the casting solution concentration on its morphology, thermal properties and gas separation performance, R. Soc. Open Sci. 6 (2019). https://doi.org/10.1098/rsos.190866.
[24] M. Vatani, A. Raisi, G. Pazuki, Mixed matrix membrane of ZSM-5/poly (ether-block-amide)/polyethersulfone for pervaporation separation of ethyl acetate from aqueous solution, Microporous Mesoporous Mater. 263 (2018) 257–267. https://doi.org/10.1016/j.micromeso.2017.12.030.
[25] S. Sridhar, S. Kalyani, Y.V.L. Ravikumar, T.S.V.N. Muralikrishna, Performance of composite membranes of poly(ether-block-amide) for dehydration of rthylene glycol and ethanol, Sep. Sci. Technol. 45 (2010) 322–330. https://doi.org/10.1080/01496390903409468.
[26] D. Nobakht, R. Abedini, Improved gas separation performance of Pebax®1657 membrane modified by poly-alcoholic compounds, J. Environ. Chem. Eng. 10 (2022). https://doi.org/10.1016/j.jece.2022.107568.
[27] R. Ghanbari, A. Marandi, E. Nazarzadeh, Journal of Environmental Chemical Engineering Development of melamine-based covalent organic framework-MOF pearl-like heterostructure integrated poly ( ether- block -amide ) for CO 2 / CH 4 separation, J. Environ. Chem. Eng. 11 (2023).
[28] D. Chen, L. Li, R. Semiat, X. He, Process Parametric Investigation of Graphene-Oxide-Embedded Composite Membranes for Boosting CO2/N2 Separation, Energy and Fuels. 37 (2023) 11187–11196. https://doi.org/10.1021/acs.energyfuels.3c01927.
[29] J. Luo, R. Guo, M. Zhang, J. Li, Gas permeation properties of polymer membranes containing pendant tertiary amine groups, High Perform. Polym. 28 (2016) 1005–1014. https://doi.org/10.1177/0954008315620287.
[30] B. Satilmis, M. Lanč, A. Fuoco, C. Rizzuto, E. Tocci, P. Bernardo, G. Clarizia, E. Esposito, M. Monteleone, M. Dendisová, K. Friess, P.M. Budd, J.C. Jansen, Temperature and pressure dependence of gas permeation in amine-modified PIM-1, J. Memb. Sci. 555 (2018) 483–496. https://doi.org/10.1016/j.memsci.2018.03.039.
[31] Gholamreza Alizadeh, Reza Abedini, Ahmad Rahimpour, Ahmad Rahimpour, Effect of MIL-53 metal organic frameworks on performance of Pebax/PEG mixed matrix membrane for CO 2/CH4 separation, Chem. - Polym. Eng. (2019) 61–79.
[32] H. Hassanzadeh, R. Abedini, M. Ghorbani, CO2 Separation over N2 and CH4 Light Gases in Sorbitol-Modified Poly(ether-block-amide) (Pebax 2533) Membrane, Ind. Eng. Chem. Res. 61 (2022) 13669–13682. https://doi.org/10.1021/acs.iecr.2c02760.
[33] M. Isanejad, N. Azizi, T. Mohammadi, Pebax membrane for CO2/CH4 separation: Effects of various solvents on morphology and performance, J. Appl. Polym. Sci. 134 (2017) 1–9. https://doi.org/10.1002/app.44531.
[34] X. Feng, Z. Qin, Q. Lai, Z. Zhang, Z.W. Shao, W. Tang, W. Wu, Z. Dai, C. Liu, Mixed-matrix membranes based on novel hydroxamate metal–organic frameworks with two-dimensional layers for CO2/N2 separation, Sep. Purif. Technol. 305 (2023). https://doi.org/10.1016/j.seppur.2022.122476.
[35] M.G. Mina Kheirtalab, Reza Abedini, A novel ternary mixed matrix membrane comprising polyvinyl alcohol (PVA)-modified poly (ether-block-amide)(Pebax®1657)/graphene oxide nanoparticles for CO2 separation, (2022) 100788. https://doi.org/10.1016/j.cogsc.2023.100788.
[36] M.G. Mina Kheirtalab, Reza Abedini, Investigation of performance of Pebax/ Poly(vinyl alcohol) blend membrane for carbon dioxide separation from nitrogen Mina, 3 (2020) 55–69.
[37] S. Khoshhal Salestan, K. Pirzadeh, A. Rahimpour, R. Abedini, Poly (ether-block amide) thin-film membranes containing functionalized MIL-101 MOFs for efficient separation of CO2/CH4, J. Environ. Chem. Eng. 9 (2021) 1–11. https://doi.org/10.1016/j.jece.2021.105820.