حذف یون های مس و کروم از محلول‌های آبی با نانوذرات مغناطیسی عامل‌دار شده با N - فسفونو متیل آمینو دی‌استیک اسید

نوع مقاله : پژوهشی اصیل

نویسندگان

1 استادیار، گروه پژوهشی شیمی و فرایند، پژوهشگاه نیرو، تهران، ایران

2 استادیار، مرکز تحقیقات نانوتگنولوژی، پژوهشگاه ابن سینا، تهران، ایران

چکیده
آلودگی آب و خاک با فلزات سنگین خطرات و تهدیدهای جدی برای سلامتی بشر و محیط زیست ایجاد می­کند و لذا یافتن راهکاری مؤثر برای حذف این فلزات بسیار لازم و ضروری می­باشد. در این پژوهش ابتدا نانو ذرات مغناطیسی MnFe2O4@SiO2 عامل­دار شده با N- فسفونو متیل آمینو دی­استیک اسید با ساختار هسته-پوسته سنتز شدند. سپس خصوصیات گروه‌های عاملی سطحی، ساختار کریستالی، خواص مغناطیسی، اندازه و مورفولوژی سطحی این نانوذرات با بکارگیری آنالیزهای طیف­سنجی مادون قرمز تبدیل فوریه (FT-IR)، پراش اشعه ایکس (XRD)، میکرسکوپ الکترونی عبوری (TEM) میکرسکوپ الکترونی روبشی (FE-SEM)، آنالیز توزین حرارتی (TGA) و مغناطیس­سنج نمونه مرتعش (VSM) مورد بررسی و شناسایی قرار گرفتند. نهایتاً بررسی کارایی این نانوجاذب سنتزی در حذف یون­های مس و کروم از محلول­های آبی مورد بررسی و ارزیابی قرار گرفت. اثر پارامترهای مختلف همچون اثر pH، مقدار جاذب و زمان تماس بر میزان جذب یون­های مس و کروم از محلول بررسی گردید. نتایج نشان می­دهد که با افزایش میزان pH از 5/2 تا 5 میزان جذب دو یون فلزی مس (II) و کروم (VI) به طور چشمگیری افزایش می­یابد و بالاترین راندمان جذب در pH برابر 7 حاصل شد. میزان R در نمودار جذب فرندلیچ یون مس نسبت به ایزوترم لانگمویر بیشتر است و در نتیجه جذب یون مس بر روی جاذب از معادله جذب فرندلیچ تبعیت می­کند. همچنین میزان R در نمودار جذب فرندلیچ برای یون کروم نسبت به ایزوترم لانگمویر بیشتر می­باشد و از اینرو جذب یون­های کروم بر روی جاذب از معادله جذب فرندلیچ پیروی می­کند. همچنین در معادله فرندلیچ میزان nبالا نشان­دهنده جذب مطلوب و مؤثر می­باشد. علاوه بر این بررسی ایزوترم­های جذب نشان می­دهد که جذب فلزات کروم و مس از دو مدل لانگمویر و فرندلیچ پیروی می­کند. همچنین قابلیت بازیافت و استفاده مجدد جاذب در چرخه متوالی جذب-واجذب با بکارگیری یک مگنت مغناطیسی مورد بررسی قرار گرفت و نتایج نشان می­دهد که کاهش قابل توجهی در فعالیت جاذب مشاهده نمی­شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Removal of copper and chromium ions from aqueous solutions with magnetic nanoparticles functionalized with N-phosphonomethyl amino diacetic acid

نویسندگان English

Mohsen Esmaeilpour 1
Majid Ghahraman Afshar 1
Zeinab Noroozi Tisseh 1
Ramin Ghahremanzadeh 2
1 Assistant Professor, Chemical and Process Engineering Department, Niroo Research Institute (NRI), Tehran, Iran
2 Assistant Professor, Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
چکیده English

Contamination of water and soil with heavy metals poses serious risks and threats to human health and the environment, and therefore finding an effective solution to remove these metals is very necessary. In this research, magnetic nanoparticles MnFe2O4 @ SiO2 functionalized with N-phosphonomethyl aminodiacetic acid with core-shell structure were synthesized. These nanoparticles were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, (TGA) thermal gravimetric analysis, transmission electron microscope (TEM), and (VSM) vibration sample magnetometer. The performance of this synthetic nanoadsorbent for removing Cr (VI), Cu (II) ions from aqueous solutions was evaluated by various parameters such as adsorbent amount, contact time effect on adsorption rate and pH effect. The results show that the adsorption efficiency increases with raising pH (2.5-5) and the best adsorbent performance in the adsorption process of Cr ((VI) and Cu (II) ions at pH 7 was observed. The amount of R in the Freundlich adsorption diagram of copper ion is higher than the Langmuir isotherm. As a result, the adsorption of copper ions on the adsorbent follows the Freundlich adsorption equation. In addition, the amount of R in the Freundlich adsorption diagram for chromium ion is higher than the Langmuir isotherm. Therefore, the absorption of chromium ions on the adsorbent follows the Freundlich adsorption equation. In conclusion, a high n value indicates a favorable and effective absorption in the Freundlich equation. The adsorption data were analyzed by the Langmuir and Freundlich isotherm model. In addition, the recyclability and reuse of the adsorbent was investigated. The results show that no significant reduction in adsorbent activity is observed.

کلیدواژه‌ها English

Nanoparticle
MnFe2O4@SiO2
Phosphonomethyl Aminodiacetic acid
Magnetic Nanoadsorbent
Ion Removal
Heavy metal Ion
[1] S. Özdemir, M.S. Yalçın, E. Kılınç, Preconcentrations of Ni (II) and Pb (II) from water and food samples by solid-phase extraction using Pleurotus ostreatus immobilized iron oxide nanoparticles, Food Chemistry, 336, 127675, 2021.
[2] V. Chandra, J. Park, Y. Chun, J.W. Lee, I.-C. Hwang, K.S. Kim, Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal, ACS nano, 4(7), 3979-3986, 2010.
[3] A.A. Hassan, A.A. Mohamed, A.-M. Barakat, A.S. Darwish, New insights on the expediency of Egyptian organoclays to suppress corrosiveness of acidic-produced water in Abu-Rudeis oilfield, South Sinai, by removal of scale-forming cations and sulfate-reducing bacteria: Is there a direct link to clay lamellar ordering?, DESALINATION AND WATER TREATMENT, 207, 60-85, 2020.
[4] M. Soleimani, M.S. Mahmodi, A. Morsali, A. Khani, M.G. Afshar, Using a new ligand for solid phase extraction of mercury, Journal of hazardous materials, 189(1-2), 371-376, 2011.
[5] I. Dindarloo Inaloo, S. Majnooni, H. Eslahi, M. Esmaeilpour, Nickel (II) nanoparticles immobilized on EDTA-modified Fe3O4@ SiO2 nanospheres as efficient and recyclable catalysts for ligand-free Suzuki–Miyaura coupling of aryl carbamates and sulfamates, ACS omega, 5(13), 7406-7417, 2020.
[6] M. Esmaeilpour, A.R. Sardarian, A. Jarrahpour, E. Ebrahimi, J. Javidi, Synthesis and characterization of β-lactam functionalized superparamagnetic Fe 3 O 4@ SiO 2 nanoparticles as an approach for improvement of antibacterial activity of β-lactams, RSC Advances, 49(6), 43387-43376, 2016.
[7] M. Soleimani, M. Ghahraman Afshar, A. Sedghi, Amino-functionalization of multiwall carbon nanotubes and its use for solid phase extraction of mercury ions from fish sample, International Scholarly Research Notices, 2013.
[8] M. Ghahraman Afshar, G.A. Crespo, E. Bakker, Direct ion speciation analysis with ion-selective membranes operated in a sequential potentiometric/time resolved chronopotentiometric sensing mode, Analytical chemistry, 84(20), 8813-8821, 2012.
[9] M. Esmaeilpour, S. Zahmatkesh, N. Fahimi, M. Nosratabadi, Palladium nanoparticles immobilized on EDTA‐modified Fe3O4@ SiO2 nanospheres as an efficient and magnetically separable catalyst for Suzuki and Sonogashira cross‐coupling reactions, Applied Organometallic Chemistry, 32(4), e4302, 2018.
[10] L. Liu, S. Liu, L. Zhao, G. Su, X. Liu, H. Peng, J. Xue, A. Tang, Fabrication of novel magnetic core-shell chelating adsorbent for rapid and highly efficient adsorption of heavy metal ions from aqueous solution, Journal of Molecular Liquids, 313, 113593, 2020.
[11] M. Soleimani, S. Ghaderi, M.G. Afshar, S. Soleimani, Synthesis of molecularly imprinted polymer as a sorbent for solid phase extraction of bovine albumin from whey, milk, urine and serum, Microchemical Journal, 100, 1-7, 2012.
[12] I.D. Inaloo, S. Majnooni, H. Eslahi, M. Esmaeilpour, N-Arylation of (hetero) arylamines using aryl sulfamates and carbamates via C–O bond activation enabled by a reusable and durable nickel (0) catalyst, New Journal of Chemistry, 44(31), 13266-13278, 2020.
[13] P. Hu, J.V. Morabito, C.-K. Tsung, Core–shell catalysts of metal nanoparticle core and metal–organic framework shell, Acs Catalysis, 4(12), 4409-4419, 2014.
[14] A.R. Sardarian, H. Eslahi, M. Esmaeilpour, Copper (II) complex supported on Fe3O4@ SiO2 coated by polyvinyl alcohol as reusable nanocatalyst in N‐arylation of amines and N (H)‐heterocycles and green synthesis of 1H‐tetrazoles, ChemistrySelect, 3(5), 1499-1511, 2018.
[15] M. Soleimani, M.G. Afshar, Highly selective solid phase extraction of mercury ion based on novel ion imprinted polymer and its application to water and fish samples, Journal of Analytical Chemistry, 70(1), 5-12, 2015.
[16] D. Yuan, A.H. Anthis, M. Ghahraman Afshar, N. Pankratova, M. Cuartero, G.n.A. Crespo, E. Bakker, All-solid-state potentiometric sensors with a multiwalled carbon nanotube inner transducing layer for anion detection in environmental samples, Analytical chemistry, 87(17), 8640-8645, 2015.
[17] O. Mounkachi, R. Lamouri, E. Salmani, M. Hamedoun, A. Benyoussef, H. Ez-Zahraouy, Origin of the magnetic properties of MnFe2O4 spinel ferrite: Ab initio and Monte Carlo simulation, Journal of Magnetism and Magnetic Materials, 533, 168016, 2021.
[18] X. Xu, J. Yang, Y. Hong, J. Wang, Nitrate Precursor Driven High Performance Ni/Co-MOF Nanosheets for Supercapacitors, ACS Applied Nano Materials, 5(6), 8382-8392, 2022.
[19] Z. Liu, G. Chen, F. Hu, X. Li, Synthesis of mesoporous magnetic MnFe2O4@ CS-SiO2 microsphere and its adsorption performance of Zn2+ and MB studies, Journal of environmental management, 263, 110377, 2020.
[20] Z. Rashid, R. Ghahremanzadeh, M.-R. Nejadmoghaddam, M. Nazari, M.-R. Shokri, H. Naeimi, A.-H. Zarnani, Nickel-Salen supported paramagnetic nanoparticles for 6-His-target recombinant protein affinity purification, Journal of Chromatography A, 1490, 47-53, 2017.
[21] R. Mozafari, F. Heidarizadeh, Phosphotungstic acid supported on SiO2@ NHPhNH2 functionalized nanoparticles of MnFe2O4 as a recyclable catalyst for the preparation of tetrahydrobenzo [b] pyran and indazolo [2, 1-b] phthalazine-triones, Polyhedron, 162, 263-276, 2019.
[22] Z. Jarolímová, G.A. Crespo, M.G. Afshar, M. Pawlak, E. Bakker, All solid state chronopotentiometric ion-selective electrodes based on ferrocene functionalized PVC, Journal of Electroanalytical Chemistry, 709, 118-125, 2013.
[23] M. Esmaeilpour, A.R. Sardarian, H. Firouzabadi, Theophylline Supported on Modified Silica‐Coated Magnetite Nanoparticles as a Novel, Efficient, Reusable Catalyst in Green One‐Pot Synthesis of Spirooxindoles and Phenazines, ChemistrySelect, 3(32), 9236-9248, 2018.
[24] R.S. Yadav, I. Kuřitka, J. Vilcakova, T. Jamatia, M. Machovsky, D. Skoda, P. Urbánek, M. Masař, M. Urbánek, L. Kalina, Impact of sonochemical synthesis condition on the structural and physical properties of MnFe2O4 spinel ferrite nanoparticles, Ultrasonics sonochemistry, 61, 104839, 2020.
[25] R. Kavkhani, A. Hajalilou, E. Abouzari-Lotf, L.P. Ferreira, M.M. Cruz, M. Yusefi, E. Parvini, A.B. Ogholbeyg, U.N. Ismail, CTAB assisted synthesis of MnFe2O4@ SiO2 nanoparticles for magnetic hyperthermia and MRI application, Materials Today Communications, 31, 103412, 2022.
[26] Z. Rashid, M. Soleimani, R. Ghahremanzadeh, M. Vossoughi, E. Esmaeili, Effective surface modification of MnFe2O4@ SiO2@ PMIDA magnetic nanoparticles for rapid and high-density antibody immobilization, Applied Surface Science, 426, 1023-1029, 2017.
[27] A. Sardarian, M. Kazemnejadi, M. Esmaeilpour, Functionalization of superparamagnetic Fe3O4@ SiO2 nanoparticles with a Cu (II) binuclear Schiff base complex as an efficient and reusable nanomagnetic catalyst for N‐arylation of α‐amino acids and nitrogen‐containing heterocycles with aryl halides, Applied Organometallic Chemistry, 35(1), e6051, 2021.
[28] M. Esmaeilpour, J. Javidi, M. Zandi, Preparation and characterization of Fe3O4@ SiO2@ PMA: AS an efficient and recyclable nanocatalyst for the synthesis of 1-amidoalkyl-2-naphthols, Materials Research Bulletin, 55, 78-87, 2014.
[29] N. Li, F. Fu, J. Lu, Z. Ding, B. Tang, J. Pang, Facile preparation of magnetic mesoporous MnFe2O4@ SiO2− CTAB composites for Cr (VI) adsorption and reduction, Environmental Pollution, 220, 1376-1385, 2017.
[30] M. Esmaeilpour, A. Sardarian, J. Javidi, Dendrimer-encapsulated Pd (0) nanoparticles immobilized on nanosilica as a highly active and recyclable catalyst for the copper-and phosphine-free Sonogashira–Hagihara coupling reactions in water, Catalysis Science & Technology, 6(11), 4005-4019, 2016.
[31] E.D. van Hullebusch, M.H. Zandvoort, P.N. Lens, Nickel and cobalt sorption on anaerobic granular sludges: kinetic and equilibrium studies, Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 79(11), 1219-1227, 2004.
[32] B. Hameed, A.M. Din, A. Ahmad, Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies, Journal of hazardous materials, 141(3), 819-825, 2007.
[33] T. Naiya, A. Bhattacharya, S. Das, Removal of Cd (II) from aqueous solutions using clarified sludge, Journal of Colloid and Interface Science, 325(1), 48-56, 2008.