[1] Hu J., Yu F. and Lu Y., Application of Fischer–Tropsch Synthesis in Biomass to Liquid Conversion, Catalysts, 2, 303-326, 2012.
[2] Unruh D., Pabst K. and Schaub G., Fischer− Tropsch Synfuels from Biomass: Maximizing Carbon Efficiency and Hydrocarbon Yield, Energy & Fuels, 24, 2634-2641, 2010.
[3] Ghasemi M., Mohammadi M. and Sedighi M., Sustainable Production of Light Olefins from Greenhouse Gas CO2 over Sapo-34 Supported Modified Cerium Oxide, Microporous and Mesoporous Materials, 297, 110029, 2020.
[4] Sedighi M., Ghasemi M., Mohammadi M. and Hassan S.H., A Novel Application of a Neuro–Fuzzy Computational Technique in Modeling of Thermal Cracking of Heavy Feedstock to Light Olefin, RSC Advances, 4, 28390-28399, 2014.
[5] Sedighi M. and Mohammadi M., Simulation of Fluidized Bed Reactor Using Computational Fluid Dynamics in the Process of Methanol Conversion to Light Olefins; Kinetic Modeling Study, Journal of Petroleum Research, 31, 103-115, 2022.
[6] Sedighi M. and Mohammadi M., CO2 Hydrogenation to Light Olefins over Cu-CeO2/SAPO-34 Catalysts: Product Distribution and Optimization, Journal of CO2 Utilization, 35, 236-244, 2020.
[7] Saeidi S., Najari S., Fazlollahi F., Nikoo M.K., Sefidkon F., Klemeš J.J. and Baxter L.L., Mechanisms and Kinetics of CO2 Hydrogenation to Value-Added Products: A Detailed Review on Current Status and Future Trends, Renewable and Sustainable Energy Reviews, 80, 1292-1311, 2017.
[8] Numpilai T., Wattanakit C., Chareonpanich M., Limtrakul J. and Witoon T., Optimization of Synthesis Condition for CO2 Hydrogenation to Light Olefins over In2O3 Admixed with SAPO-34, Energy Conversion and Management, 180, 511-523, 2019.
[9] Gao J., Jia C. and Liu B., Direct and Selective Hydrogenation of CO2 to Ethylene and Propene by Bifunctional Catalysts, Catalysis Science & Technology, 7, 5602-5607, 2017.
[10] Park Y.-K., Park K.-C. and Ihm S.-K., Hydrocarbon Synthesis through CO2 Hydrogenation over CuZnOZrO2/Zeolite Hybrid Catalysts, Catalysis today, 44, 165-173, 1998.
[11] Li C., Ban H., Cai W., Zhang Y., Li Z. and Fujimoto K., Direct Synthesis of Iso-Butane from Synthesis Gas or CO2 over CuZnZrAl/Pd-β Hybrid Catalyst, Journal of Saudi Chemical Society, 21, 974-982, 2017.
[12] Li Z., Wang J., Qu Y., Liu H., Tang C., Miao S., Feng Z., An H. and Li C., Highly Selective Conversion of Carbon Dioxide to Lower Olefins, ACS Catalysis, 7, 8544-8548, 2017.
[13] Owen R.E., Plucinski P., Mattia D., Torrente-Murciano L., Ting V.P. and Jones M.D., Effect of Support of Co-Na-Mo Catalysts on the Direct Conversion of CO2 to Hydrocarbons, Journal of CO2 Utilization, 16, 97-103, 2016.
[14] Li C., Yuan X. and Fujimoto K., Direct Synthesis of LPG from Carbon Dioxide over Hybrid Catalysts Comprising Modified Methanol Synthesis Catalyst and Β-Type Zeolite☆, Applied Catalysis A: General, 475, 155-160, 2014.
[15] Sedighi M., Mohammadi M. and Sedighi M., Green SAPO-5 Supported NiO Nanoparticles as a Novel Adsorbent for Removal of Petroleum Asphaltenes: Financial Assessment, Journal of Petroleum Science and Engineering, 171, 1433-1442, 2018.
[16] Nouri M., Sedighi M., Ghasemi M. and Mohammadi M., Evaluation of Solvent Dearomatization Effect in Heavy Feedstock Thermal Cracking to Light Olefin: An Optimization Study, Korean Journal of Chemical Engineering, 30, 1700-1709, 2013.
[17] Fujiwara M. and Souma Y., Hydrocarbon Synthesis from Carbon Dioxide and Hydrogen over Cu–Zn–Cr Oxide/Zeolite Hybrid Catalysts, Journal of the Chemical Society, Chemical Communications, 767-768, 1992.
[18] Lan L., Wang A. and Wang Y., CO2 Hydrogenation to Lower Hydrocarbons over ZSM-5-Supported Catalysts in a Dielectric-Barrier Discharge Plasma Reactor, Catalysis Communications, 130, 105761, 2019.
[19] Kruk M., Jaroniec M., Ko C.H. and Ryoo R., Characterization of the Porous Structure of SBA-15, Chemistry of materials, 12, 1961-1968, 2000.
[20] Verma P., Kuwahara Y., Mori K., Raja R. and Yamashita H., Functionalized Mesoporous SBA-15 Silica: Recent Trends and Catalytic Applications, Nanoscale, 12, 11333-11363, 2020.
[21] Hoang V.-T., Huang Q., Eić M., Do T.-O. and Kaliaguine S., Structure and Diffusion Characterization of SBA-15 Materials, Langmuir, 21, 2051-2057, 2005.
[22] Yang C.-M., Zibrowius B., Schmidt W. and Schüth F., Consecutive Generation of Mesopores and Micropores in SBA-15, Chemistry of materials, 15, 3739-3741, 2003.
[23] Rahimi K., Towfighi J., Sedighi M., Masoumi S. and Kooshki Z., The Effects of SiO2/Al2O3 and H2O/Al2O3 Molar Ratios on SAPO-34 Catalysts in Methanol to Olefins (MTO) Process Using Experimental Design, Journal of industrial and engineering chemistry, 35, 123-131, 2016.
[24] Petre A., Carbajo J., Rosal R., Garcia-Calvo E. and Perdigón-Melón J., CuO/SBA-15 Catalyst for the Catalytic Ozonation of Mesoxalic and Oxalic Acids. Water Matrix Effects, Chemical engineering journal, 225, 164-173, 2013.
[25] Gervasini A. and Bennici S., Dispersion and Surface States of Copper Catalysts by Temperature-Programmed-Reduction of Oxidized Surfaces (s-TPR), Applied Catalysis A: General, 281, 199-205, 2005.
[26] Sing K.S., Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984), Pure and applied chemistry, 57, 603-619, 1985.
[27] Cai L., Li H., Zhang H., Fan W., Wang J., Wang Y., Wang X., Tang Y. and Song Y., Enhanced Performance of the Tangerines-Like CuO-Based Gas Sensor Using Zno Nanowire Arrays, Materials Science in Semiconductor Processing, 118, 105196, 2020.