کنترل غلظت سوبسترا در یک واکنشگاه زیستی تولید هیدروژن به روش خطی‌سازی پسخور

نوع مقاله : پژوهشی اصیل

نویسندگان

1 دانشکده مهندسی شیمی، دانشگاه صنعتی شریف

2 دانشکده مهندسی شیمی، دانشگاه تربیت مدرس

چکیده
موضوع: هیدروژن زیستی یک منبع انرژی تجدیدپذیر است که استفاده از آن به عنوان سوخت، مزایای اقتصادی و محیط‌زیستی زیادی دارد. کنترل غلظت سوبسترا در واکنشگاه، تاثیر چشم‌گیری بر میزان تولید هیدروژن دارد. فرایند تولید هیدروژن زیستی یک فرایند پیچیده و غیرخطی است که کنترل آن مستلزم به کارگیری روش‌های کنترل غیرخطی است. در این مقاله، به کنترل غلظت سوبسترا در یک واکنشگاه بی‌هوازی تولید هیدروژن با استفاده از روش خطی‌سازی پسخور پرداخته شده است.

روش تحقیق: مدل مورد استفاده برای شبیه‌سازی، یک مدل شناخته شده متشکل از سه متغیر حالت است. کنترل‌کننده پیشنهادی، یک کنترل‌کننده خطی‌سازی‌شده کلی (GLC) است که بر اساس روش خطی‌سازی پسخور (Feedback linearization) طراحی می‌شود. در این روش، سیستم غیرخطی از طریق انتقال دستگاه مختصات، به طور دقیق خطی‌سازی می‌شود. بنابراین، می‌توان سیستم خطی‌سازی شده را با استفاده از یک کنترل‌کننده خطی کنترل کرد. به منظور خطی‌سازی سیستم، با استفاده از مدل ارایه‌شده برای این فرایند و با به کارگیری مفاهیم هندسه دیفرانسیلی یک جبران‌کننده غیرخطی طراحی شده است. در صورت به کارگیری جبران‌کننده غیرخطی، می‌توان از کنترل‌کننده تناسبی-انتگرالی (PI) به عنوان کنترل‌کننده خطی استفاده کرد. عملکرد کنترل‌کننده GLC+PI در کنترل فرایند مذکور، در مقایسه با یک کنترل‌کننده غیرخطی (NC) و یک کنترل‌کننده PI، مورد سنجش قرار گرفته است. عملکرد کنترل‌کننده‌های مذکور با شبیهسازی عددی و بر اساس شاخص انتگرال زمان در مربع خطا (ITSE) مطالعه شده است.

نتایج اصلی: نتایج شبیه‌سازی حاکی از این هستند که کنترل غلظت سوبسترا در این فرایند، به طور کلی، باعث افزایش مقدار تولید هیدروژن می‌شود. روش پیشنهادی در این مقاله
(GLC+PI) برای کنترل غلظت سوبسترا در واکنشگاه زیستی تولید هیدروژن، در مقایسه با کنترل‌کننده‌های NC و PI، عملکرد بهتری در تعقیب مقدار مقرر دارد. در صورت تغییر 25 درصدی پارامترهای سینتیکی، عملکرد NC مختل می‌شود، اما روش های PI و GLC+PI در برابر این مقدار عدم قطعیت مقاوم هستند. عملکرد مناسب کنترل‌کننده می‌تواند تولید پایدار هیدروژن را تضمین کند. مقایسه نتایج شبیه‌سازی در حالت حلقه‌باز و حلقه‌بسته نشان می‌دهد که کنترل غلظت سوبسترا باعث افزایش 90 درصدی تولید هیدروژن می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Substrate concentration control in a bio-reactor for bio-hydrogen production via feedback linearization

نویسندگان English

Saeed Fallah Ramezani 1
محمد fakhroleslam 2
1 Chem. Eng. Dep., Sharif Univ. of technology
2 Faculty of Chemical Eng., TMU
چکیده English

Research subject: Bio-hydrogen is a renewable energy source with many economic and environmental benefits as a fuel. Controlling the concentration of the substrate in the reactor has a significant effect on the amount of hydrogen production. However, bio-hydrogen production is a nonlinear process that requires the implementation of nonlinear control methods. In this paper, substrate concentration in an anaerobic bio-reactor is controlled using the feedback linearization method.

Research approach: The model employed for the simulation is a well-known model consisting of three state variables. The proposed controller is a globally linearized controller (GLC) designed based on the feedback linearization technique. In this method, the nonlinear system is precisely linearized by a transformation of the coordinate system. As a result, the linearized system can be controlled using a linear controller. In order to linearize the system, a nonlinear compensator is designed using the design model and applying the concepts of differential geometry. Proportional-integral (PI) controller is adopted as a linear controller. GLC controller performance has been compared with a nonlinear controller (NC) and a PI controller. The performance of these controllers has been studied by numerical simulation based on the integral of time-square error (ITSE).

Main results: The simulation results show that substrate concentration control can contribute to the hydrogen production. The control method applied has better set-point tracking than the other two control approaches. The ITSE performance index for the feedback linearization method is lower than the other two methods. The nonlinear feedback controller fails if the kinetic parameters are changed by 25%, but the PI method and the feedback linearization are robust against model uncertainty. An efficient controller guarantees stable bio-hydrogen production. Comparing open-loop and closed-loop simulation results shows that controlling the substrate concentration increases hydrogen production by 90%.

کلیدواژه‌ها English

Bio-hydrogen
Bio-reactor
Process control
Feedback linearization
Global linearized control
[1] S. Kumar Gupta, S. Kumari, K. Reddy, and F. Bux, Trends in biohydrogen production: major challenges and state-of-the-art developments, Environmental technology, vol. 34, no. 13-14, pp. 1653-1670, 2013.
[2] K.-M. R. Simon, H. S. Lee, J. K. Lim, T. W. Kim, J.-H. Lee, and S. G. Kang, One-carbon substrate-based biohydrogen production: microbes, mechanism, and productivity, Biotechnology advances, vol. 33, no. 1, pp. 165-177, 2015.
[3] H. Wang, J. Xu, L. Sheng, X. Liu, Y. Lu, and W. Li, A review on bio‐hydrogen production technology, International Journal of Energy Research, vol. 42, no. 11, pp. 3442-3453, 2018.
[4] R. Nandi and S. Sengupta, Microbial production of hydrogen: an overview, Critical reviews in microbiology, vol. 24, no. 1, pp. 61-84, 1998.
[5] N.-Q. Ren et al., Effects of different pretreatment methods on fermentation types and dominant bacteria for hydrogen production, International Journal of Hydrogen Energy, vol. 33, no. 16, pp. 4318-4324, 2008.
[6] P. A. L. Pérez, M. I. Neria-González, and R. A. López, Increasing the bio-hydrogen production in a continuous bioreactor via nonlinear feedback controller, international journal of hydrogen energy, vol. 40, no. 48, pp. 17224-17230, 2015.
[7] J. Wei, Z.-T. Liu, and X. Zhang, Biohydrogen production from starch wastewater and application in fuel cell, International Journal of Hydrogen Energy, vol. 35, no. 7, pp. 2949-2952, 2010.
[8] S. S. Kumar, V. R. Kumar, and G. P. Reddy, Nonlinear control of bioreactors with input multiplicities—an experimental work, Bioprocess biosystems engineering, vol. 28, no. 1, pp. 45-53, 2005.
[9] Y. Yang, H. Ren, P. Ben-Tzvi, X. Yang, and Z. He, Optimal interval of periodic polarity reversal under automated control for maximizing hydrogen production in microbial electrolysis cells, international journal of hydrogen energy, vol. 42, no. 31, pp. 20260-20268, 2017.
[10] C.-A. Aceves-Lara, E. Latrille, and J.-P. Steyer, Optimal control of hydrogen production in a continuous anaerobic fermentation bioreactor, International journal of hydrogen energy, vol. 35, no. 19, pp. 10710-10718, 2010.
[11] S.-R. Huang et al., Fermentative hydrogen production using a real-time fuzzy controller, International journal of hydrogen energy, vol. 37, no. 20, pp. 15575-15581, 2012.
[12] J. Rodríguez, G. Ruiz, F. Molina, E. Roca, and J. Lema, A hydrogen-based variable-gain controller for anaerobic digestion processes, Water Science Technology, vol. 54, no. 2, pp. 57-62, 2006.
[13] C. Lu et al., An automated control system for pilot-scale biohydrogen production: design, operation and validation, International Journal of Hydrogen Energy, vol. 45, no. 6, pp. 3795-3806, 2020.
[14] C. Lu et al., Biohydrogen production in pilot-scale fermenter: effects of hydraulic retention time and substrate concentration, Journal of Cleaner Production, vol. 229, pp. 751-760, 2019.
[15] J. Obeid, J.-P. Magnin, J.-M. Flaus, O. Adrot, J. C. Willison, and R. Zlatev, Modelling of hydrogen production in batch cultures of the photosynthetic bacterium Rhodobacter capsulatus, international journal of hydrogen energy, vol. 34, no. 1, pp. 180-185, 2009.
[16] L. F. Shampine and M. W. Reichelt, The matlab ode suite, SIAM journal on scientific computing, vol. 18, no. 1, pp. 1-22, 1997.
[17] L. F. Shampine, M. W. Reichelt, and J. A. Kierzenka, Solving index-1 DAEs in MATLAB and Simulink, SIAM review, vol. 41, no. 3, pp. 538-552, 1999.
[18] Increasing the bio-hydrogen production in a continuous bioreactor via nonlinear feedback Controller.