[1] S. Kumar Gupta, S. Kumari, K. Reddy, and F. Bux, Trends in biohydrogen production: major challenges and state-of-the-art developments, Environmental technology, vol. 34, no. 13-14, pp. 1653-1670, 2013.
[2] K.-M. R. Simon, H. S. Lee, J. K. Lim, T. W. Kim, J.-H. Lee, and S. G. Kang, One-carbon substrate-based biohydrogen production: microbes, mechanism, and productivity, Biotechnology advances, vol. 33, no. 1, pp. 165-177, 2015.
[3] H. Wang, J. Xu, L. Sheng, X. Liu, Y. Lu, and W. Li, A review on bio‐hydrogen production technology, International Journal of Energy Research, vol. 42, no. 11, pp. 3442-3453, 2018.
[4] R. Nandi and S. Sengupta, Microbial production of hydrogen: an overview, Critical reviews in microbiology, vol. 24, no. 1, pp. 61-84, 1998.
[5] N.-Q. Ren et al., Effects of different pretreatment methods on fermentation types and dominant bacteria for hydrogen production, International Journal of Hydrogen Energy, vol. 33, no. 16, pp. 4318-4324, 2008.
[6] P. A. L. Pérez, M. I. Neria-González, and R. A. López, Increasing the bio-hydrogen production in a continuous bioreactor via nonlinear feedback controller, international journal of hydrogen energy, vol. 40, no. 48, pp. 17224-17230, 2015.
[7] J. Wei, Z.-T. Liu, and X. Zhang, Biohydrogen production from starch wastewater and application in fuel cell, International Journal of Hydrogen Energy, vol. 35, no. 7, pp. 2949-2952, 2010.
[8] S. S. Kumar, V. R. Kumar, and G. P. Reddy, Nonlinear control of bioreactors with input multiplicities—an experimental work, Bioprocess biosystems engineering, vol. 28, no. 1, pp. 45-53, 2005.
[9] Y. Yang, H. Ren, P. Ben-Tzvi, X. Yang, and Z. He, Optimal interval of periodic polarity reversal under automated control for maximizing hydrogen production in microbial electrolysis cells, international journal of hydrogen energy, vol. 42, no. 31, pp. 20260-20268, 2017.
[10] C.-A. Aceves-Lara, E. Latrille, and J.-P. Steyer, Optimal control of hydrogen production in a continuous anaerobic fermentation bioreactor, International journal of hydrogen energy, vol. 35, no. 19, pp. 10710-10718, 2010.
[11] S.-R. Huang et al., Fermentative hydrogen production using a real-time fuzzy controller, International journal of hydrogen energy, vol. 37, no. 20, pp. 15575-15581, 2012.
[12] J. Rodríguez, G. Ruiz, F. Molina, E. Roca, and J. Lema, A hydrogen-based variable-gain controller for anaerobic digestion processes, Water Science Technology, vol. 54, no. 2, pp. 57-62, 2006.
[13] C. Lu et al., An automated control system for pilot-scale biohydrogen production: design, operation and validation, International Journal of Hydrogen Energy, vol. 45, no. 6, pp. 3795-3806, 2020.
[14] C. Lu et al., Biohydrogen production in pilot-scale fermenter: effects of hydraulic retention time and substrate concentration, Journal of Cleaner Production, vol. 229, pp. 751-760, 2019.
[15] J. Obeid, J.-P. Magnin, J.-M. Flaus, O. Adrot, J. C. Willison, and R. Zlatev, Modelling of hydrogen production in batch cultures of the photosynthetic bacterium Rhodobacter capsulatus, international journal of hydrogen energy, vol. 34, no. 1, pp. 180-185, 2009.
[16] L. F. Shampine and M. W. Reichelt, The matlab ode suite, SIAM journal on scientific computing, vol. 18, no. 1, pp. 1-22, 1997.
[17] L. F. Shampine, M. W. Reichelt, and J. A. Kierzenka, Solving index-1 DAEs in MATLAB and Simulink, SIAM review, vol. 41, no. 3, pp. 538-552, 1999.
[18] Increasing the bio-hydrogen production in a continuous bioreactor via nonlinear feedback Controller.