Layeghi A, Payehghadr M, Ghahraman Afshar M, bahrami panah N. Fe3O4@SiO2 magnetic core-shell nanoparticles functionalized with 1,4-dihydroxyanthraquinone as an effective and recyclable adsorbent for the removal of divalent cadmium from aqueous solutions. IQBQ 2023; 7 (3) :3-17
URL:
http://arcpe.modares.ac.ir/article-38-73125-en.html
1- Department of Chemistry, Payam Noor University, Tehran, Iran
2- Assistant Professor, Chemistry and Process Research Department, Niroo Research Institute (NRI), Tehran, Iran , mghahramanafshar@nri.ac.ir
Abstract: (433 Views)
Aim: The removal of heavy metals from drinking water is one of the highest impact challenges in the water and wastewater industry. For this purpose, the use of methods such as solid phase extraction followed by the use of selective adsorbents is considered as one of the most important issues in the water and wastewater industry.
Method: In this research, in order to remove the polluting and toxic heavy metal cadmium from water in the water treatment industry, Fe3O4 nanoparticles with a diameter of 10 nm have been synthesized. In order to make these nanoparticles resistant to corrosion and erosive factors of the environment, they are covered with a silica shell and afterwards with the aim of removing cadmium ions from aqueous solutions, the surface of Fe3O4@SiO2 nanoparticles is modified with 1,4-dihydroxyanthraquinone molecules. The synthesized nanoparticles are characterized in order to evaluate the efficiency of these nanoparticles in separating cadmium ions soluble in water has.
Results: The synthesized and functionalized magnetic nanoparticles have an effective surface area of 378 m2/g with black color and spherical morphology. The effects of the parameters of the amount of nano adsorbent, pH of the solution, various concentrations of the solution and test time in the removal of divalent cadmium ions are investigated. According to the experimental data, the optimal values for the absorption process at pH 7 by using 18 mg of adsorbent in 50 ml of cadmium solution with an initial concentration of 0.35 mmol/L lead to the removal of cadmium ions with a maximum absorption of 92% at ambient temperature in a period of 35 minutes. Moreover, the recyclability and reusability of Fe3O4@SiO2-DAQ in the adsorption-desorption process of cadmium ion is investigated using a magnetic magnet, and the results confirm that this synthetic nanocomposite is an effective adsorbent with excellent performance in order to remove divalent cadmium ion from aqueous solutions.
Article Type:
Original Research |
Subject:
IR Spectroscopy Received: 2023/12/26 | Accepted: 2024/10/20 | Published: 2023/11/1