[1] Karavalakis G., Durbin T.D., Villela M. and Miller J.W., Air Pollutant Emissions of Light-Duty Vehicles Operating on Various Natural Gas Compositions, Journal of Natural Gas Science and Engineering,4, 8-16, 2012.
[2] Hao H., Liu Z., Zhao F., Li W., Natural Gas as Vehicle Fuel in China: A Review, Renewable and Sustainable Energy Reviews, 62, 521–533,2016.
[3] Dudley B., BP Statistical Review of World Energy 2016. British Petroleum Statistical Review of World Energy, Bplc. editor, Pureprint Group Limited, UK. 2-4,2019.
[4] Zou C., Zhao Q., Zhang G., Xiong B., Energy Revolution: from a Fossil Energy Era to a New Energy Era, Natural Gas Industry B, 3(1), 1–11, 2016.
[5] Tang Z., Zhang T., Luo D., Wang Y., Hu Z. and Yang R.T., Catalytic Combustion of Methane: from Mechanism and Materials Properties to Catalytic Performance, ACS Catalysis, 12(21),13457-13474, 2022.
[6] Rahimpour M., Dehnavi M., Allahgholipour F., Iranshahi D., Jokar S., Assessment and Comparison of Different Catalytic Coupling Exothermic and Endothermic Reactions: A Review, Applied Energy, 99, 496–512, 2012.
[7] Li Z., Hoflund G.B., A Review on Complete oxidation of Methane at Low Temperatures. Journal of Natural Gas Chemistry, 12(3),153–160, 2003.
[8] He L., Fan Y., Bellettre J., Yue J. and Luo L., A Review on Catalytic Methane Combustion at Low temperatures: Catalysts, Mechanisms, Reaction Conditions and Reactor Designs. Renewable and Sustainable Energy Reviews, 119, 109589-109620, 2020.
[9] Rotko M., Machocki A., Stasinska B., Studies of Catalytic Process of Complete Oxidation of Methane by SSITKA Method, Applied Surface Science, 256(17), 5585-5589, 2010.
[10] Specchia S., Finocchio E., Busca G., Palmisano P., Specchia V., Surface Chemistry and Reactivity of Ceria–zirconia-supported Palladium Oxide Catalysts for Natural Gas Combustion, Journal of Catalysis, 263(1), 134-145, 2009.
[11] Gelin P., Urfels L., Primet M., Tena E., Complete Oxidation of Methane at Low Temperature over Pt and Pd Catalysts for The Abatement of Lean-burn Naturals Fuelled Vehicles Emissions: Influence of Water and Sulphur Containing Compounds, Catalysis Today, 83(1–4), 45–57, 2003.
[12] Kylhammar L., Carlsson P.A., Skoglundh M., Sulfur Promoted Low-temperature Oxidation of Methane over Ceria Supported Platinum Catalysts, J. Catal., 284(1), 50-59, 2011.
[13] Waters R.D., Weimer J.J., Smith J.E., An Investigation of the Activity of Coprecipitated Gold Catalysts for Methane Oxidation, Catalysis Letters, 30,181-188,1994.
[14] Ersson A., Kušar H., Carroni R., Griffin T., Järås S, Catalytic Combustion of Methane over Bimetallic Catalysts a Comparison Between a Novel Annular Reactor and a High-pressure Reactor. Catalysis Today, 83(1-4), 265-277, 2003.
[15] Cimino S., Casaletto M.P., Lisi L., Russo G., Pd–LaMnO3 as Dual Site Catalysts for Methane Combustion, Applied Catalysis A: General, 327(2),238-246, 2007.
[16] Tzimpilis E., Moschoudis N., Stoukides M., Bekiaroglou P., Preparation, active phase Composition and Pd Content of Perovskite-type Oxides, Applied Catalysis B: Environment,84(3-4),607-615, 2008.
[17] Kaddouri A., Dupont N., Gelin P., Delichere P., Methane Combustion over Copper Chromites Catalysts Prepared by the Sol–gel Process, Catalysis Letters,141:1581-1589, 2011.
[18] Laassiri S., Bion N., Can F., Courtois X., Duprez D., Royer S., Alamdari H., Waste-free Scale up Synthesis of Nanocrystalline Hexaaluminate: Properties in Oxygen Transfer and Oxidation Reactions, CrystEngComm,14(22), 7733-7743, 2012.
[19] Águila G., Gracia F., Cortés J., Araya P., Effect of Copper Species and the Presence of Reaction Products on the Activity of Methane Oxidation on Supported CuO Catalysts, Applied Catalysis B: Environment, 77(3-4), 325-338, 2008.
[20] Xiao T.C., Ji S.F., Wang H.T., Coleman K.S., Green M.L., Methane Combustion over Supported Cobalt Catalysts, J. Mol. Catal. A: Chem., 175(1-2),111-123, 2001.
[21] Han Y.F., Chen L., Ramesh K., Widjaja E., Chilukoti S., Surjami I.K., Chen J., Kinetic and Spectroscopic Study of Methane Combustion over α-Mn2O3 Nanocrystal Catalysts, Journal of Catalysis, 253(2), 261-268, 2008.
[22] Shan W., Luo M., Ying P., Shen W., Li C. Reduction Property and Catalytic Activity of Ce1− XNiXO2 Mixed Oxide Catalysts for CH4 Oxidation. Applied Catalysis A: General, 246(1),1-9, 2003.
[23] Han YF, Chen L, Ramesh K, Zhong Z, Chen F, Chin J, Mook H. Coral-like Nanostructured α-Mn2O3 Nanaocrystals for Catalytic Combustion of Methane: Part I. Preparation and Characterization. Catalysis Today,131(1-4), 35-41, 2008.
[24] Zhou G., Shah P.R., Gorte RJ., A study of Cerium–manganese Mixed Oxides for Oxidation Catalysis, Catalysis Letters, 120, 191-197, 2008.
[25] Fiuk M.M., Adamski A., Activity of MnOx–CeO2 Catalysts in Combustion of Low Concentrated Methane, Catalysis Today, 257, 131-135, 2015.
[26] Limin S.H., Wei C.H., Fenfen Q.U., Jinyan H.U., Minmin L.I., Catalytic Performance for Methane Combustion of Supported Mn-Ce Mixed Oxides, The Journal of Rare Earths, 26(6), 836-840, 2008.
[27] Akbari E., Alavi S.M., Rezaei M., Larimi A., CeO2-promoted BaO-MnOx Catalyst for Lean Methane Catalytic Combustion at Low Temperatures: Improved Catalytic Efficiency and Light-off temperature, International Journal of Hydrogen Energy, 47(26), 13004-13021, 2022.
[28] Zhang Y., Qin Z., Wang G., Zhu H., Dong M., Li S., Wu Z., Li Z., Wu Z., Zhang J., Hu T., Catalytic Performance of MnOx–NiO Composite oxide in Lean Methane Combustion at Low temperature, Applied Catalysis B: Environment and Energy,129, 172-181, 2013.
[29] Eslami H., Ehrampoush M.H., Esmaeili A., Ebrahimi A.A., Ghaneian M.T., Falahzadeh H., Salmani M.H., Synthesis of mesoporous Fe-Mn bimetal oxide nanocomposite by aeration co-precipitation method: physicochemical, structural, and optical properties. Materials Chemistry and Physics, 224-265-72, 2019.
[30] Haneef M., Gul I.H., Hussain M., Hassan I., Investigation of magnetic and dielectric properties of cobalt cubic spinel ferrite nanoparticles synthesized by CTAB-assisted co-precipitation method. Journal of Superconductivity and Novel Magnetism, 34(5),1467-1476, 2021.
[31] Ranjbar A., Irankhah A., Aghamiri S.F., Catalytic activity of rare earth and alkali metal promoted (Ce, La, Mg, K) Ni/Al2O3 nanocatalysts in reverse water gas shift reaction. Research on Chemical Intermediates,45,5125-5141, 2019.
[32] Pourchez J., Forest V., Boumahdi N., Boudard D., Tomatis M., In vitro Cellular Responses to Silicon Carbide Nanoparticles: Impact of Physico-chemical Features on Pro-inflammatory and Prooxidative Effects, Journal of Nanoparticle Research,14 (10), 1143–1163, 2012.
[33] Varbar M., Alavi S.M., Rezaei M., Akbari E., Lean Methane Catalytic Combustion over the Mesoporous MnOx-Ni/MgAl2O4 Catalysts: Effects of Mn loading, International Journal of Hydrogen Energy, 47(94), 39829-40, 2022.
[34] Ranjbar A., Rezaei M., Low temperature synthesis of nanocrystalline calcium aluminate compounds with surfactant-assisted precipitation method. Advanced Powder Technology, 25(1),467-471, 2014.
[35] Thommes M., Kaneko K., Neimark A.V., Olivier J. P., Rodriguez-Reinoso F., Rouquerol J., Sing K. S., Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore size Distribution (IUPAC Technical Report), Pure and Applied Chemistry,87(9-10), 1051-1069, 2015.
[36] Zielinski J.M., Kettle L., Physical Characterization: Surface Area and Porosity. London: Intertek. 2013.
[37] You Z., Balint I., Aika K.I., Catalytic Combustion of Methane over Microemulsion-Derived MnOx–Cs2O–Al2O3 Nanocomposites, Applied Catalysis B: Environment and Energy, 53(4), 233-244, 2004.
[38] Van Vegten N., Baidya T., Krumeich F., Kleist W., Baiker A., Flame-made MgAl2− xMxO4 (M= Mn, Fe, Co) Mixed Oxides: Structural Properties and Catalytic Behavior in Methane Combustion, Applied Catalysis B: Environment and Energy,97(3-4), 398-406, 2010.
[39] Zhong L., Fang Q., Li X., Li Q., Zhang C., Chen G., Influence of Preparation Methods on the Physicochemical Properties and Catalytic Performance of Mn-Ce Catalysts for Lean Methane Combustion, Applied Catalysis A: General, 579, 151-158, 2019.
[40] Xu J., Li P., Song X., He C., Yu J., Han Y.F., Operando Raman Spectroscopy for Determining the Active Phase in One-Dimensional Mn1−xCexO2±y Nanorod Catalysts during Methane Combustion, The Journal of Physical Chemistry Letters, 1(10), 1648-1654, 2010.