حذف یون فلزی سرب از محلول آبی با نانوجاذب مغناطیسی هسته-پوسته Fe3O4@SiO2 عامل‌دار شده با پلی‌وینیل الکل

نوع مقاله : پژوهشی اصیل

نویسندگان

1 استادیار، گروه پژوهشی شیمی و فرایند، پژوهشگاه نیرو، تهران، ایران

2 آزمایشگاه شیمی پلیمر، گروه شیمی، دانشکده علوم، دانشگاه گلستان، گرگان، ایران

چکیده
موضوع تحقیق: حضور فلزات سنگین در آب‌های سطحی و زیرزمینی و به دنبال آن ورود این دسته از فلزات به آب­های شرب در غلظت­های بالا تأثیرات جبران­ناپذیری بر سلامت انسان­ها دارد. در این راستا، از گذشته تا کنون استفاده از روش استخراج فاز جامد به‌عنوان روشی معمول و کاربردی برای حذف فلزات سنگین از نمونه­ های آب و فاضلاب محسوب می­شده است. بنابراین تولید جاذب­های مؤثر روش استخراج فاز جامد برای حذف یون­های فلزات سنگین از درجه اهمیت بالایی برخوردار است.

روش تحقیق: در پژوهش حاضر، مولکول­های پلی­وینیل الکل با استفاده از ترکیبات سیانوریک کلرید و تری­اتوکسی‌سیلیل‌پروپیل‌آمین به نانوذرات هسته-پوسته Fe3O4@SiO2 متصل شدند. در ادامه نانوذرات سنتزی به‌عنوان جاذبی مؤثر برای حذف یون فلز سنگین Pb2+ از محلول­های آبی مورد استفاده قرار گرفتند. خصوصیات ساختاری، ریختار (Morphology) و اندازه ذرات با استفاده از طیف­سنجی فروسرخ تبدیل فوریه، پراش انرژی پرتوی ایکس، پراش پرتوی ایکس، گرماوزن‌سنجی، مغناطیس­سنجی نمونه مرتعش و میکروسکوپی الکترونی عبوری و پویشی مورد بررسی و ارزیابی قرار گرفتند.

نتایج اصلی: بهینه ­سازی پارامترهای مؤثر در عملکرد جذبی جاذب همچون pH، دوز جاذب و مدت زمان تماس در mL 50 محلول (با غلظت اولیه mg/L 52/72) در دمای محیط انجام شد. نتایج بررسی­ ها نشان داد که بهترین عملکرد جذبی در pH برابر با 7 در مدت زمان min 35 و مقدار mg 32 از جاذب اتفاق می­ افتد که منجر به حذف یون فلز سنگین Pb2+ به میزان 89% از محلول می­ شود. علاوه بر این، نانوجاذب سنتزی توانایی بازیابی و استفاده پی­ در­پی تا 5 مرتبه در فرایند جذب-واجذب را بدون کاهش جدی در فعالیت عملکردی دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Removal of Lead Metal Ion from Aqueous Solution with Fe3O4@SiO2 Core-Shell Magnetic Nanoadsorbent Functionalized with Polyvinyl Alcohol

نویسندگان English

Mohsen Esmaeilpour 1
Majid Ghahraman Afshar 1
Milad Kazemnejadi 2
1 Assistant Professor, Chemistry and Process Research Department, Niroo Research Institute (NRI), Tehran, Iran
2 Polymer Chemistry Lab, Chemistry Department, Faculty of Sciences, Golestan University, Gorgan, Iran
چکیده English

Research subject: The presence of heavy metal ions in surface and underground water, followed by their infiltration into drinking water at high concentrations, poses irreparable risks to human health and the environment. In this context, solid-phase extraction (SPE) has recently been recognized as a routine and practical method for removing heavy metals from water and wastewater samples. Consequently, the development of selective adsorbents for application in the SPE method is of significant importance in environmental studies.

Research Approach: In the present study, polyvinyl alcohol (PVA) molecules were functionalized onto Fe₃O₄@SiO₂ core-shell nanoparticles using cyanuric chloride and triethoxysilyl propylamine compounds. The synthesized nanoparticles were then employed as an effective adsorbent for the removal of Pb²⁺ ions from aqueous solutions. The structural characteristics, morphology, and particle size were analyzed using Fourier-transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Furthermore, the key operational parameters affecting adsorption performance were evaluated to optimize the adsorption capacity for the effective removal of heavy metal contaminants.
Main Results: The optimal adsorption capacity of 89% was achieved under the following conditions: pH 7, a contact time of 35 minutes, 32 mg of adsorbent in 50 mL of solution with an initial Pb²⁺ concentration of 72.52 mg/L (0.35 mmol/L), at ambient temperature. Additionally, the synthesized nanoadsorbent demonstrated recyclability for up to five adsorption-desorption cycles without a significant decline in functional efficiency.

کلیدواژه‌ها English

Fe3O4@SiO2 nanoparticles
solid phase extraction
Heavy metals
Adsorption
[1] Ahmad A., Hameed B. and Aziz N., Adsorption of direct dye on palm ash: Kinetic and equilibrium modeling, Journal of Hazardous Materials, 141(1), 70-76, 2007.
[2] Esmaeilpour M., Ghahraman Afshar M., Noroozi Tisseh Z. and Ghahremanzadeh R., Removal of copper and chromium ions from aqueous solutions with magnetic nanoparticles functionalized with N-phosphonomethyl amino diacetic acid, Journal of Applied Research of Chemical-Polymer Engineering, 7(1), 33-46, 2023.
[3] Esmaeilpour M. and Ghahraman Afshar M., Magnetic Nanoadsorbent: Preparation, characterization, and Adsorption Properties for Removal of Copper(II) from Aqueous Solutions, Applied Chemistry, 18(69), 11-20, 2023.
[4] Luo X., Lei X., Xie X., Yu B., Cai N. and Yu F., Adsorptive removal of Lead from water by the effective and reusable magnetic cellulose nanocomposite beads entrapping activated bentonite, Carbohydrate polymers, 151, 640-648, 2016.
[5] Asgharinezhad A.A.A., Esmaeilpour M. and Ghahraman Afshar G., Synthesis of magnetic Fe3O4@SiO2 nanoparticles decorated with polyvinyl alcohol for Cu(II) and Cd(II) ions removal from aqueous solution, Chemical Paper, 2024. DOI:10.21203/rs.3.rs-3236672/v1.
[6] Esmaeilpour M., Ghahraman Afshar M. and Kazemnejadi M., Preparation, characterization, and adsorption properties of bis-salophen schiff base ligand immobilized on Fe3O4@SiO2 nanoparticles for removal of lead(II) from aqueous solutions, Applied Chemistry, 18(66), 125-146, 2023.
[7] Nolan E.M. and Lippard S.J., Tools and tactics for the optical detection of mercuric ion, Chemical reviews, 108(9), 3443-3480, 2008.
[8] Esmaeilpour M., Larimi A., Ghahramanafshar M. and Faghihi M., Ethylenediaminetetraacetic acid coated Fe₃O₄@SiO₂ nanocomposite: An effective adsorbent for the removal of copper ions from aqueous system, Applied Chemistry, 17(65), 45-54, 2023.
[9] Safir I., Ngo K.X., Abraham J.N., Ghahraman Afshar M., Pavlova E. and Nardin C., Synthesis and structure formation in dilute aqueous solution of a chitosan-DNA hybrid, Polymer, 79, 29-36, 2015.
[10] Carmona M., Warchoł J., Lucas A.d. and Rodriguez J.F., Ion-exchange equilibria of Pb2+, Ni2+, and Cr3+ ions for H+ on amberlite IR-120 resin, Journal of Chemical & Engineering Data, 53(6), 1325-1331, 2008.
[11] Rao M.M., Ramana D., Seshaiah K., Wang M. and Chien S.C., Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls, Journal of Hazardous Materials, 166(2-3), 1006-1013, 2009.
[12] Niknam E., Ghahraman Afshar M., Ghaseminejad H. and Esameilpour M., Pharmaceutical Pollutants Removal by Using Electrochemical Oxidation Technique, Journal of Water and Wastewater; Ab va Fazilab (in persian), 33(4), 71-81, 2022.
[13] Gu J., Yuan S., Shu W., Jiang W., Tang S., Liang B. and Pehkonen S.O., PVBC microspheres tethered with poly (3-sulfopropyl methacrylate) brushes for effective removal of Pb(II) ions from aqueous solution, Colloids and Surfaces A: Physicochemical And Engineering Aspects, 498, 218-230, 2016.
[14] Esmaeilpour M., Larimi A., Asgharinezhad A., Ghahramanafshar M. and Faghihi M., Silica nanoparticles extracted from rice husk and functionalized with dendrimer as an effective recyclable adsorbent to remove divalent cadmium from aqueous solutions, Journal of Applied Research of Chemical-Polymer Engineering, 6(1), 63-76, 2022.
[15] Larimi A., Esmaeilpour M., Ghahramanafshar M., Faghihi M. and Asgharinezhad A., EDTA-functionalized Fe3O4@SiO2 magnetic nanoadsorbent for divalent cadmium removal from aqueous solutions, Journal of Applied Research of Chemical-Polymer Engineering, 5(3), 95-106, 2021.
[16] Kazemnejadi M., Alavi S.A., Rezazadeh Z., Nasseri M.A., Allahresani A. and Esmaeilpour M., Fe3O4@SiO2@Im[Cl]Mn(III)-complex as a highly efficient magnetically recoverable nanocatalyst for selective oxidation of alcohol to imine and oxime, Journal of Molecular Structure, 1186, 230-249, 2019.
[17] Soleimani M., Mahmodi M.S., Morsali A., Khani A. and Ghahraman Afshar M., Using a new ligand for solid phase extraction of mercury, Journal of Hazardous Materials, 189(1-2), 371-376, 2011.
[18] Soleimani M., Ghaderi S., Ghahraman Afshar M. and Soleimani S., Synthesis of molecularly imprinted polymer as a sorbent for solid phase extraction of bovine albumin from whey, milk, urine and serum, Microchemical Journal, 100, 1-7, 2012.
[19] Sardarian A.R., Mohammadi F., Esmaeilpour M., Dendrimer-encapsulated copper(II) immobilized on Fe3O4@SiO2 NPs: A robust recoverable catalyst for click synthesis of 1, 2, 3-triazole derivatives in water under mild conditions, Research on Chemical Intermediates, 45, 1437-1456, 2019.
[20] Jansod S., Ghahraman Afshar M., Crespo G.A. and Bakker E., Phenytoin speciation with potentiometric and chronopotentiometric ion-selective membrane electrodes, Biosensors and Bioelectronics, 79, 114-120, 2016.
[21] Soleimani M., Ghahraman Afshar M. and Ganjali M.R., High selective methadone sensor based on molecularly imprinted polymer carbon paste electrode modified with carbon nanotubes, Sensor Letters, 11(10), 1983-1991, 2013.
[22] Soleimani M., Ghahraman Afshar M., Shafaat A. and Crespo G.A., High‐Selective Tramadol Sensor Based on Modified Molecularly Imprinted Polymer Carbon Paste Electrode with Multiwalled Carbon Nanotubes, Electroanalysis, 25(5), 1159-1168, 2013.
[23] Crespo G.A., Ghahraman Afshar M. and Bakker E., Reversible sensing of the anticoagulant heparin with protamine permselective membranes, Angewandte Chemie, 124(50), 12743-12746, 2012.
[24] Chen Z., Geng Z., Zhang Z., Ren L., Tao T., Yang R. and Guo Z., Synthesis of magnetic Fe3O4@ C nanoparticles modified with–SO3H and–COOH groups for fast removal of Pb2+, Hg2+, and Cd2+ ions, European Journal of Inorganic Chemistry, 2014(20), 3172-3177, 2014.
[25] Afshar M.G., Crespo G.A. and Bakker E., Thin‐Layer Chemical Modulations by a Combined Selective Proton Pump and pH Probe for Direct Alkalinity Detection, Angewandte Chemie, 127(28), 8228-8231, 2015.
[26] Chi Y., Yuan Q., Li Y., Tu J., Zhao L., Li N. and Li X., Synthesis of Fe₃O₄@ SiO₂-Ag magnetic nanocomposite based on small-sized and highly dispersed silver nanoparticles for catalytic reduction of 4-nitrophenol, Journal of colloid and interface science, 383(1), 96-102, 2012.
[27] Wang L., Liao R. and Li X., Layer-by-layer deposition of luminescent polymeric microgel films on magnetic Fe3O4@SiO2 nanospheres for loading and release of ibuprofen, Powder technology, 235, 103-109, 2013.
[28] Esmaeilpour M., Zahmatkesh S., Fahimi N. and Nosratabadi M., Palladium nanoparticles immobilized on EDTA‐modified Fe3O4@SiO2 nanospheres as an efficient and magnetically separable catalyst for Suzuki and Sonogashira cross‐coupling reactions, Applied Organometallic Chemistry, 32(4), e4302, 2018.
[29] Dindarloo Inaloo I., Esmaeilpour M., Majnooni S. and Reza Oveisi A., Nickel‐Catalyzed Synthesis of N‐(Hetero) Aryl Carbamates from Cyanate Salts and Phenols Activated with Cyanuric Chloride, ChemCatChem, 12(21), 5486-5491, 2020.
[30] Sardarian A.R., Eslahi H. and Esmaeilpour M., Copper(II) complex supported on Fe3O4@SiO2 coated by polyvinyl alcohol as reusable nanocatalyst in N‐arylation of amines and N(H)‐heterocycles and green synthesis of 1H‐tetrazoles, ChemistrySelect, 3(5), 1499-1511, 2018.
[31] Sardarian A.R., Eslahi H. and Esmaeilpour M., Green, cost‐effective and efficient procedure for Heck and Sonogashira coupling reactions using palladium nanoparticles supported on functionalized Fe3O4@SiO2 by polyvinyl alcohol as a highly active, durable and reusable catalyst, Applied Organometallic Chemistry, 33(7), e4856, 2019.
[32] Esmaeilpour M., Javidi J. and Dehghani F., Preparation, characterization and catalytic activity of dendrimer-encapsulated phosphotungstic acid nanoparticles immobilized on nanosilica for the synthesis of 2H-indazolo [2,1-b] phthalazine-triones under solvent-free or sonochemical conditions, Journal of the Iranian Chemical Society, 13, 695-714, 2016.
[33] Inaloo I.D., Majnooni S., Eslahi H. and Esmaeilpour M., N-Arylation of (hetero) arylamines using aryl sulfamates and carbamates via C-O bond activation enabled by a reusable and durable nickel(0) catalyst, New Journal of Chemistry, 44(31), 13266-13278, 2020.
[34] Sardarian A., Kazemnejadi M. and Esmaeilpour M., Functionalization of superparamagnetic Fe3O4@SiO2 nanoparticles with a Cu(II) binuclear Schiff base complex as an efficient and reusable nanomagnetic catalyst for N‐arylation of α‐amino acids and nitrogen‐containing heterocycles with aryl halides, Applied Organometallic Chemistry, 35(1), e6051, 2021.
[35] Chen C.Y., Yang C.Y. and Chen A.H., Biosorption of Cu(II), Zn(II), Ni(II) and Pb(II) ions by cross-linked metal-imprinted chitosans with epichlorohydrin, Journal of Environmental Management, 92(3), 796-802, 2011.
[36] Wadhwa S.K., Tuzen M., Kazi T.G., Soylak M. and Hazer B., Polyhydroxybutyrate-b-polyethyleneglycol block copolymer for the solid phase extraction of lead and copper in water, baby foods, tea and coffee samples, Food Chemistry, 152, 75-80, 2014.
[37] Abollino O., Aceto M., Malandrino M., Sarzanini C. and Mentasti E., Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances, Water research, 37(7), 1619-1627, 2003.
[38] Tekin K., Uzun L., Şahin Ç.A., Bektaş S. and Denizli A., Preparation and characterization of composite cryogels containing imidazole group and use in heavy metal removal, Reactive and Functional Polymers, 71(10), 985-993, 2011.
[39] Zulkali M., Ahmad A., Norulakmal N. and Oryza sativa L. husk as heavy metal adsorbent: optimization with lead as model solution, Bioresource technology, 97(1), 21-25, 2006.
[40] Raul P.K., Senapati S., Sahoo A.K., Umlong I.M., Devi R.R., Thakur A.J. and Veer V., CuO nanorods: a potential and efficient adsorbent in water purification, RSC Advances, 4(76), 40580-40587, 2014.
[41] Yu B., Zhang Y., Shukla A., Shukla S.S. and Dorris K.L., The removal of heavy metals from aqueous solutions by sawdust adsorption-removal of lead and comparison of its adsorption with copper, Journal of hazardous materials, 84(1), 83-94, 2001.
[42] Saleh T.A., Agarwal S. and Gupta V.K., Synthesis of MWCNT/MnO2 and their application for simultaneous oxidation of arsenite and sorption of arsenate, Applied Catalysis B: Environmental, 106(1-2), 46-53, 2011.
[43] Wang Y., Wang X., Wang X., Liu M., Wu Z., Yang L., Xia S. and Zhao J., Adsorption of Pb(II) from aqueous solution to Ni-doped bamboo charcoal, Journal of Industrial and Engineering Chemistry, 19(1), 353-359, 2013.
[44] Bée A., Talbot D., Abramson S. and Dupuis V., Magnetic alginate beads for Pb(II) ions removal from wastewater, Journal of colloid and interface science, 362(2), 486-492, 2011.
[45] Eren E., Afsin B. and Onal Y., Removal of lead ions by acid activated and manganese oxide-coated bentonite, Journal of hazardous materials, 161(2-3), 677-685, 2009.
[46] Cho H., Oh D. and Kim K., A study on removal characteristics of heavy metals from aqueous solution by fly ash, Journal of Hazardous Materials, 127(1-3), 187-195, 2005.
[47] Moradi O., Aghaie M., Zare K., Monajjemi M. and Aghaie H., The study of adsorption characteristics Cu2+ and Pb2+ ions onto PHEMA and P(MMA-HEMA) surfaces from aqueous single solution, Journal of Hazardous Materials, 170(2-3), 673-679, 2009.
[48] Kabbashi N.A., Atieh M.A., Al-Mamun A., Mirghami M.E., Alam M. and Yahya N., Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueous solution, Journal of Environmental Sciences, 21(4), 539-544, 2009.
[49] Prasad G., Mahato T., Yadav S. and Singh B., Sulphur mustard vapor breakthrough behaviour on reactive carbon systems, Journal of Hazardous Materials, 143(1-2), 150-155, 2007.
[50] Badruddoza, A.Z.M., Shawon, Z. B. Z., Tay, W. J. D., Hidajat, K. and M. S. Uddin, Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohydrate Polymer. 91(1), 322-332, 2013.
[51] Nassar, N.N., Rapid Removal and Recovery of Pb(II) From Wastewater by Magnetic Nanoadsorbents. Journal of Hazardous Materials. 184(1-3), 538-546, 2010.
[52] Xu, M., Zhang, Y., Zhang, Z., Shen, Y., Zhao, M. and Pan G., Study on the adsorption of Ca2+, Cd2+ and Pb2+ by magnetic Fe3O4 yeast treated with EDTA dianhydride. Chemical. Engineering. Journal. 168(2), 737-745, 2011.
[53] Tran, H.V., Tran, L.D. and Nguyen, T. N. Preparation of chitosan/magnetite composite beads and their application for removal of Pb(II) and Ni(II) from aqueous solution. Materials. Science and Engineering: C. 30(2), 304-310, 2010.