A comprehensive review on the application of nanoparticles in the matrix of phase change materials to improve thermal properties for energy management and storage

Document Type : Analytic Review

Authors

1 Master's student at the Faculty of Chemical Engineering, Isfahan University of Technology

2 Associate professor in Department of Chemical Engineering, Isfahan University of Technology

3 PhD in Chemical Engineering, Isfahan University of Technology

4 Associate Professor of Polymer Engineering, Iran Space Research Institute, Tehran, Iran

Abstract
Given the ever-increasing demand for energy and the limited nature of fossil fuel resources, improving energy efficiency and storage has become one of the most significant challenges facing humanity. Phase Change Materials (PCMs), substances capable of absorbing and releasing thermal energy at a constant temperature, have emerged as an innovative solution in the field of energy storage. With their high latent heat capacity, ability to maintain a stable temperature, and environmental friendliness, PCMs have great potential for applications in various industries. However, their low thermal conductivity, especially in organic PCMs, has hindered their widespread use. To address this challenge, researchers have been exploring various methods to enhance the thermal properties of PCMs. One of the most effective approaches involves incorporating high thermal conductivity nanoparticles into the PCM matrix. This research comprehensively reviews recent advancements in the preparation and applications of nanoparticle-enhanced phase change materials. It delves into various types of nanoparticles used, production methods for nanocomposites, the impact of nanoparticles on the thermal and mechanical properties of PCMs, the stabilization of nanocomposites with surfactants and surface modification, and also their potential applications in diverse industries. The results of this study indicate that the use of nanoparticles can significantly improve the thermal conductivity of PCMs, with carbon-based nanofillers showing the highest impact. Additionally, nanoparticles have led to a relative reduction in the phenomenon of supercooling in PCMs. Based on the results of numerous studies, nanoparticle-enhanced phase change materials hold great promise for improving the performance of energy storage systems, reducing energy consumption in various industries, and fostering the development of sustainable technologies. These nanocomposites can be employed in the construction, automotive, electronics, and textile industries to create more comfortable environments, enhance energy efficiency, and reduce greenhouse gas emissions. Continued research in this field is expected to lead to the development of even more efficient PCMs with a broader range of applications.

Keywords

Subjects


[1] H. Masoumi, Investigating the stability of phase change nanomaterials for use in thermal energy storage, in: Power Res. Inst. Res. Gr. Cycle Heat Exch., 2020.
[2] S. Ali, S.P. Deshmukh, An overview: Applications of thermal energy storage using phase change materials, Mater. Today Proc. 26 (2019) 1231–1237. https://doi.org/10.1016/j.matpr.2020.02.247.
[3] S. Sami, N. Etesami, Improving thermal characteristics and stability of phase change material containing TiO2 nanoparticles after thermal cycles for energy storage, 2017. https://doi.org/10.1016/j.applthermaleng.2017.06.023.
[4] Z. Zarezadeh, A. Basharat, M. Antique, sh. Zohri, Z. Alizadeh, M. Hassanzadeh, Heat
transfer control methods in temperature regulating textiles, Iran Chemical Engineering 22 (2023) 43-70. https://doi.org/10.22034/ijche.2023.354821.1228.
[5] F. Rostamian, N. Etesami, M. Mehrali, Microencapsulation of eutectic phase change materials for temperature management of the satellite electronic board, Appl. Therm. Eng. 236 (2024) 121592. https://doi.org/10.1016/j.applthermaleng.2023.121592.
[6] R. Rezaei Khuzani, N. Etesami, Preparation of Perlite/Phase Change Material Composite and Improvement of Its Thermal Properties Using Silica Nanoparticles for Energy Optimization in the Construction Industry, 6th International Conference on Optimal Management and Development of Energy Infrastructure (1401). https://civilica.com/doc/1636706.
[7] F. Rostamian, N. Etesami, M. Haghgoo, Management of electronic board temperature using heat sink containing pure and microencapsulated phase change materials, Int. Commun. Heat Mass Transf. 126 (2021) 105407. https://doi.org/https://doi.org/10.1016/j.icheatmasstransfer.2021.105407.
[8] S. Sami, N. Etesami, Enhancement of Thermal Performance of Phase Change Materials via Microencapsulation, 2nd International Conference on Novel Research Findings in Chemistry and Chemical Engineering (2016). https://civilica.com/doc/477336.
[9] S. Sami, N. Etesami, Heat transfer enhancement of microencapsulated phase change material by addition of nanoparticles for a latent heat thermal energy storage system, Energy Reports 7 (2021) 4930–4940. https://doi.org/https://doi.org/10.1016/j.egyr.2021.07.080.
[10] F. Rastmian, N. Etesami, Preparation and Characterization of Microencapsulated Stearic Acid Phase Change Material with a Titania Shell for Thermal Energy Storage, 17th National Iranian Congress of Chemical Engineering (2021). https://civilica.com/doc/1378157.
[11] F. Rastmian, N. Etesami, M. Haghgoo, Control of Electronic board temperature using heat sink containing stearic acid as a phase change material, Journal of Mechanical Engineering, serial number 97, volume 51, number 4, winter 2021, page 441-443.
[12] Matar, Investigation of Methods for Enhancing Heat Transfer in Phase Change Materials for Thermal Energy Storage, 1st National Conference on Sustainable Building and Energy (Challenges, Necessities, and Solutions) (2018).
[13] F. Rastmian, N. Etesami, M. Haghgoo, A comprehensive review on the use of phase change materials in cooling of electronic board, Journal of Mechanical Engineering of Tabriz University, serial number 98, volume 52, number 1, spring 2022, page 359-368.
[14] G.K. Amudhalapalli, J.K. Devanuri, Synthesis, characterization, thermophysical properties, stability and applications of nanoparticle enhanced phase change materials – A comprehensive review, Therm. Sci. Eng. Prog. 28 (2022) 101049. https://doi.org/10.1016/j.tsep.2021.101049.
[15] F. Bahiraei, A. Fartaj, G.A. Nazri, Experimental and numerical investigation on the performance of carbon-based nanoenhanced phase change materials for thermal management applications, Energy Convers. Manag. 153 (2017) 115–128. https://doi.org/10.1016/j.enconman.2017.09.065.
[16] D. Dsilva Winfred Rufuss, L. Suganthi, S. Iniyan, P.A. Davies, Effects of nanoparticle-enhanced phase change material (NPCM) on solar still productivity, J. Clean. Prod. 192 (2018) 9–29. https://doi.org/10.1016/j.jclepro.2018.04.201.
[17] H. Masoumi, R. Haghighi khoshkhoo, S.M. Mirfendereski, Modification of physical and thermal characteristics of stearic acid as a phase change materials using TiO 2 -nanoparticles, Thermochim. Acta 675 (2019) 9–17. https://doi.org/10.1016/j.tca.2019.02.015.
[18] M. He, L. Yang, W. Lin, J. Chen, X. Mao, Z. Ma, Preparation, thermal characterization and examination of phase change materials (PCMs) enhanced by carbon-based nanoparticles for solar thermal energy storage, J. Energy Storage 25 (2019) 100874. https://doi.org/10.1016/j.est.2019.100874.
[19] M. George, A.K. Pandey, N. Abd Rahim, V. V. Tyagi, S. Shahabuddin, R. Saidur, A novel polyaniline (PANI)/ paraffin wax nano composite phase change material: Superior transition heat storage capacity, thermal conductivity and thermal reliability, Sol. Energy 204 (2020) 448–458. https://doi.org/10.1016/j.solener.2020.04.087.
[20] A.E. Kabeel, R. Sathyamurthy, A.M. Manokar, S.W. Sharshir, F.A. Essa, A.H. Elshiekh, Experimental study on tubular solar still using Graphene Oxide Nano particles in Phase Change Material (NPCM’s) for fresh water production, J. Energy Storage 28 (2020) 101204. https://doi.org/10.1016/j.est.2020.101204.
[21] A. Arshad, M. Jabbal, L. Shi, J. Darkwa, N.J. Weston, Y. Yan, Development of TiO2/RT–35HC based nanocomposite phase change materials (NCPCMs) for thermal management applications, Sustain. Energy Technol. Assessments 43 (2021) 100865. https://doi.org/10.1016/j.seta.2020.100865.
[22] I.A. Laghari, M. Samykano, A.K. Pandey, K. Kadirgama, Y.N. Mishra, Binary composite (TiO2-Gr) based nano-enhanced organic phase change material: Effect on thermophysical properties, J. Energy Storage 51 (2022) 1–12. https://doi.org/10.1016/j.est.2022.104526.
[23] Y. Sheikh, M.F. Orhan, M. Kanoglu, M. Umair, E. Mehaisi, Effect on the Thermal Performance of a Bio-based Phase Change Material with the Addition of Graphite with Surfactants, Heat Transf. Eng. 0 (2023) 1–14. https://doi.org/10.1080/01457632.2023.2220473.
[24] H.M. Ali, H. Babar, T.R. Shah, M.U. Sajid, M.A. Qasim, S. Javed, Preparation techniques of TiO2 nanofluids and challenges: A review, Appl. Sci. 8 (2018). https://doi.org/10.3390/app8040587.
[25] J. Paul, K. Kadirgama, M. Samykano, A.K. Pandey, V. V. Tyagi, A comprehensive review on thermophysical properties and solar thermal applications of organic nano composite phase change materials, J. Energy Storage 45 (2022) 103415. https://doi.org/10.1016/j.est.2021.103415.
[26] M. Ouikhalfan, A. Sari, H. Chehouani, B. Benhamou, A. Biçer, Preparation and characterization of nano-enhanced myristic acid using metal oxide nanoparticles for thermal energy storage, Int. J. Energy Res. 43 (2019) 8592–8607. https://doi.org/10.1002/er.4856.
[27] L. Zhang, G. Feng, A one-step-assembled three-dimensional network of silver/polyvinylpyrrolidone (PVP) nanowires and its application in energy storage, Nanoscale 12 (2020) 10573–10583. https://doi.org/10.1039/d0nr00991a.
[28] B. Xu, C. Zhang, C. Chen, J. Zhou, C. Lu, Z. Ni, One-step synthesis of CuS-decorated MWCNTs/paraffin composite phase change materials and their light–heat conversion performance, J. Therm. Anal. Calorim. 133 (2018) 1417–1428. https://doi.org/10.1007/s10973-018-7192-0.
[29] P. Zhang, J. Li, R. Xie, J. Shen, L. Song, L. Chen, One-step strategy to construct GA/PEG shape-stabilized phase change material with excellent thermophysical properties, Diam. Relat. Mater. 103 (2020) 107716. https://doi.org/10.1016/j.diamond.2020.107716.
[30] B. Xu, B. Wang, C. Zhang, J. Zhou, Synthesis and light-heat conversion performance of hybrid particles decorated MWCNTs/paraffin phase change materials, Thermochim. Acta 652 (2017) 77–84. https://doi.org/10.1016/j.tca.2017.03.003.
[31] P. Sivasamy, S. Harikrishnan, S.I. Hussain, S. Kalaiselvam, L.G. Babu, Improved thermal characteristics of Ag nanoparticles dispersed myristic acid as composite for low temperature thermal energy storage, Mater. Res. Express 6 (2019). https://doi.org/10.1088/2053-1591/ab20ba.
[32] T.P. Teng, C.C. Yu, Characteristics of phase-change materials containing oxide nano-additives for thermal storage, Nanoscale Res. Lett. 7 (2012) 1–10. https://doi.org/10.1186/1556-276X-7-611.
[33] R.K. Sharma, P. Ganesan, V. V. Tyagi, H.S.C. Metselaar, S.C. Sandaran, Thermal properties and heat storage analysis of palmitic acid-TiO2 composite as nano-enhanced organic phase change material (NEOPCM), Appl. Therm. Eng. 99 (2016) 1254–1262. https://doi.org/10.1016/j.applthermaleng.2016.01.130.
[34] M. Nourani, N. Hamdami, J. Keramat, A. Moheb, M. Shahedi, Thermal behavior of paraffin-nano-Al2O3 stabilized by sodium stearoyl lactylate as a stable phase change material with high thermal conductivity, Renew. Energy 88 (2016) 474–482. https://doi.org/10.1016/j.renene.2015.11.043.
[35] A. Babapoor, G. Karimi, Thermal properties measurement and heat storage analysis of paraffinnanoparticles composites phase change material: Comparison and optimization, Appl. Therm. Eng. 90 (2015) 945–951. https://doi.org/10.1016/j.applthermaleng.2015.07.083.
[36] M.A. Kibria, M.R. Anisur, M.H. Mahfuz, R. Saidur, I.H.S.C. Metselaar, A review on thermophysical properties of nanoparticle dispersed phase change materials, Energy Convers. Manag. 95 (2015) 69–89. https://doi.org/10.1016/j.enconman.2015.02.028.
[37] M. Nourani, Efficiency Increasing of an Indirect Solar Dryer Using Energy Storage system Based on Phase Change Materials (Paraffin and Bitumen), and Study of the Thermal Properties and Physical Stability of Nano Al2O3-paraffin Composite, (2016).
[38] M. Sayyar, R.R. Weerasiri, P. Soroushian, J. Lu, Experimental and numerical study of shape-stable phase-change nanocomposite toward energy-efficient building constructions, Energy Build. 75 (2014) 249–255. https://doi.org/10.1016/j.enbuild.2014.02.018.
[39] A. Zabalegui, D. Lokapur, H. Lee, Nanofluid PCMs for thermal energy storage: Latent heat reduction mechanisms and a numerical study of effective thermal storage performance, Int. J. Heat Mass Transf. 78 (2014) 1145–1154. https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.051.
[40] J. Wang, H. Xie, Z. Xin, Y. Li, L. Chen, Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers, Sol. Energy 84 (2010) 339–344. https://doi.org/10.1016/j.solener.2009.12.004.
[41] M.M. Heyhat, S. Mousavi, M. Siavashi, Battery thermal management with thermal energy storage composites of PCM, metal foam, fin and nanoparticle, J. Energy Storage 28 (2020) 101235. https://doi.org/10.1016/j.est.2020.101235.
[42] A.R.A. M. Mehrali, S. T. Latibari, M. Mehrali, T. M. I. Mahlia, H. S. C. Metselaar, M. S. Naghavi, E. Sadeghinezhad, Preparation and characterization of palmitic acid/graphene nanoplatelets composite with remarkable thermal conductivity as a novel shape-stabilized phase change material, Appl. Therm. Eng. 61 (2013) 633–652. https://doi.org/10.1016/j.applthermaleng.2013.08.035.
[43] X. Zheng, X. Gao, Z. Huang, Z. Li, Y. Fang, Z. Zhang, Form-stable paraffin/graphene aerogel/copper foam composite phase change material for solar energy conversion and storage, Sol. Energy Mater. Sol. Cells 226 (2021) 111083. https://doi.org/10.1016/j.solmat.2021.111083.
[44] J. Qiu, X. Fan, Y. Shi, S. Zhang, X. Jin, W. Wang, B. Tang, PEG/3D graphene oxide network form-stable phase change materials with ultrahigh filler content, J. Mater. Chem. A 7 (2019) 21371–21377. https://doi.org/10.1039/c9ta07629h.
[45] X. Huang, Y. Lin, G. Fang, Thermal properties of polyvinyl butyral/graphene composites as encapsulation materials for solar cells, Sol. Energy 161 (2018) 187–193. https://doi.org/10.1016/j.solener.2017.12.051.
[46] N. Putra, M. Amin, E.A. Kosasih, R.A. Luanto, N.A. Abdullah, Characterization of the thermal stability of RT 22 HC/graphene using a thermal cycle method based on thermoelectric methods, Appl. Therm. Eng. 124 (2017) 62–70. https://doi.org/10.1016/j.applthermaleng.2017.06.009.
[47] K.H. Solangi, S.N. Kazi, M.R. Luhur, A. Badarudin, A. Amiri, R. Sadri, M.N.M. Zubir, S. Gharehkhani, K.H. Teng, A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids, Energy 89 (2015) 1065–1086. https://doi.org/10.1016/j.energy.2015.06.105.
[48] Q. Xiong, A. Hajjar, B. Alshuraiaan, M. Izadi, S. Altnji, S.A. Shehzad, State-of-the-art review of nanofluids in solar collectors: A review based on the type of the dispersed nanoparticles, J. Clean. Prod. 310 (2021) 127528. https://doi.org/10.1016/j.jclepro.2021.127528.
[49] S. Motahar, N. Nikkam, A.A. Alemrajabi, R. Khodabandeh, M.S. Toprak, M. Muhammed, Experimental investigation on thermal and rheological properties of n-octadecane with dispersed TiO2 nanoparticles, Int. Commun. Heat Mass Transf. 59 (2014) 68–74. https://doi.org/10.1016/j.icheatmasstransfer.2014.10.016.
[50] K.R. Suresh Kumar, S. Kalaiselvam, Experimental investigations on the thermophysical properties of CuO-palmitic acid phase change material for heating applications, J. Therm. Anal. Calorim. 129 (2017) 1647–1657. https://doi.org/10.1007/s10973-017-6301-9.
[51] S. Harikrishnan, M. Deenadhayalan, S. Kalaiselvam, Experimental investigation of solidification and melting characteristics of composite PCMs for building heating application, Energy Convers. Manag. 86 (2014) 864–872. https://doi.org/10.1016/j.enconman.2014.06.042.
[52] D. Han, B. Guene Lougou, Y. Xu, Y. Shuai, X. Huang, Thermal properties characterization of chloride salts/nanoparticles composite phase change material for high-temperature thermal energy storage, Appl. Energy 264 (2020) 114674. https://doi.org/10.1016/j.apenergy.2020.114674.
[53] M.T. Chaichan, S.H. Kamel, A.-M.N.M. Al-Ajeely, Thermal Conductivity Enhancement By Using Nano-Material in Phase Change Material for Latent Heat Thermal Energy Storage Systems, Asian J. Eng. Appl. Technol. 2 (2015) 52–57.
[54] N. Sahan, H.O. Paksoy, Thermal enhancement of paraffin as a phase change material with nanomagnetite, Sol. Energy Mater. Sol. Cells 126 (2014) 56–61. https://doi.org/10.1016/j.solmat.2014.03.018.
[55] W. Cui, Y. Yuan, L. Sun, X. Cao, X. Yang, Experimental studies on the supercooling and melting/freezing characteristics of nano-copper/sodium acetate trihydrate composite phase change materials, Renew. Energy 99 (2016) 1029–1037. https://doi.org/10.1016/j.renene.2016.08.001.
[56] S.Y. Wu, H. Wang, S. Xiao, D.S. Zhu, An investigation of melting/freezing characteristics of nanoparticle-enhanced phase change materials, J. Therm. Anal. Calorim. 110 (2012) 1127–1131. https://doi.org/10.1007/s10973-011-2080-x.
[57] R.M. Al Ghossein, M.S. Hossain, J.M. Khodadadi, Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based silver nanostructure-enhanced phase change materials for thermal energy storage, Int. J. Heat Mass Transf. 107 (2017) 697–711. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.059.
[58] X. Liu, Z. Rao, Experimental study on the thermal performance of graphene and exfoliated graphite sheet for thermal energy storage phase change material, Thermochim. Acta 647 (2017) 15–21. https://doi.org/10.1016/j.tca.2016.11.010.
[59] J.L. Zeng, Z. Cao, D.W. Yang, F. Xu, L.X. Sun, X.F. Zhang, L. Zhang, Effects of MWNTs on phase change enthalpy and thermal conductivity of a solid-liquid organic PCM, J. Therm. Anal. Calorim. 95 (2009) 507–512. https://doi.org/10.1007/s10973-008-9275-9.
[60] D.H. Choi, J. Lee, H. Hong, Y.T. Kang, Thermal conductivity and heat transfer performance enhancement of phase change materials (PCM) containing carbon additives for heat storage application, Int. J. Refrig. 42 (2014) 112–120. https://doi.org/10.1016/j.ijrefrig.2014.02.004.
[61] M. Silakhori, H. Fauzi, M.R. Mahmoudian, H.S.C. Metselaar, T.M.I. Mahlia, H.M. Khanlou, Preparation and thermal properties of form-stable phase change materials composed of palmitic acid/polypyrrole/graphene nanoplatelets, Energy Build. 99 (2015) 189–195. https://doi.org/10.1016/j.enbuild.2015.04.042.
[62] S.C. Lin, H.H. Al-Kayiem, Evaluation of copper nanoparticles - Paraffin wax compositions for solar thermal energy storage, Sol. Energy 132 (2016) 267–278. https://doi.org/10.1016/j.solener.2016.03.004.
[63] D.S. Ezhumalai, G. Sriharan, S. Harikrishnan, Improved Thermal Energy Storage Behavior of CuO/Palmitic acid Composite as Phase Change Material, Mater. Today Proc. 5 (2018) 14618–14627. https://doi.org/10.1016/j.matpr.2018.03.053.
[64] B. Águila V, D.A. Vasco, P. Galvez P, P.A. Zapata, Effect of temperature and CuO-nanoparticle concentration on the thermal conductivity and viscosity of an organic phase-change material, Int. J. Heat Mass Transf. 120 (2018) 1009–1019. https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.106.
[65] M. Kazemi, A. Kianifar, H. Niazmand, Nanoparticle loading effect on the performance of the paraffin thermal energy storage material for building applications, J. Therm. Anal. Calorim. 139 (2020) 3769–3775. https://doi.org/10.1007/s10973-019-08647-1.
[66] S. Harikrishnan, A. Devaraju, P. Sivasamy, S. Kalaiselvam, Experimental investigation of improved thermal Characteristics of SiO2/myristic acid nanofluid as phase change material (PCM), Mater. Today Proc. 9 (2019) 397–409. https://doi.org/10.1016/j.matpr.2019.02.169.
[67] M. Sivashankar, C. Selvam, S. Manikandan, S. Harish, Performance improvement in concentrated photovoltaics using nano-enhanced phase change material with graphene nanoplatelets, Energy 208 (2020) 118408. https://doi.org/10.1016/j.energy.2020.118408.
[68] D. Zou, X. Ma, X. Liu, P. Zheng, Y. Hu, Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery, Int. J. Heat Mass Transf. 120 (2018) 33–41. https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.024.
[69] D. Wen, G. Lin, S. Vafaei, K. Zhang, Review of nanofluids for heat transfer applications, Particuology 7 (2009) 141–150. https://doi.org/10.1016/j.partic.2009.01.007.
[70] W. Yu, H. Xie, A review on nanofluids: Preparation, stability mechanisms, and applications, J. Nanomater. 2012 (2012). https://doi.org/10.1155/2012/435873.
[71] L. Chen, H. Xie, Y. Li, W. Yu, Nanofluids containing carbon nanotubes treated by mechanochemical reaction, Thermochim. Acta 477 (2008) 21–24. https://doi.org/10.1016/j.tca.2008.08.001.
[72] A. Haghighi, A. Babapoor, M. Azizi, Z. Javanshir, Optimization of the thermal performance of PCM nanocomposites, Res. Artic. J. Energy Manag. Technol. 4 (2020) 14–19. http://dx.doi.org/10.22109/jemt.2019.152458.1134.
[73] M. Bahari, B. Najafi, A. Babapoor, Evaluation of α-AL2O3-PW nanocomposites for thermal energy storage in the agro-products solar dryer, J. Energy Storage 28 (2020). https://doi.org/10.1016/j.est.2019.101181.
[74] G. Zhang, Z. Yu, G. Cui, B. Dou, W. Lu, X. Yan, Fabrication of a novel nano phase change material emulsion with low supercooling and enhanced thermal conductivity, Renew. Energy 151 (2020) 542–550. https://doi.org/10.1016/j.renene.2019.11.044.
[75] B. Prabhu, A. ValanArasu, Stability analysis of TiO2–Ag nanocomposite particles dispersed paraffin wax as energy storage material for solar thermal systems, Renew. Energy 152 (2020) 358–367. https://doi.org/10.1016/j.renene.2020.01.043.
[76] H. Faraji, A. Benkaddour, K. Oudaoui, M. El Alami, M. Faraji, Emerging applications of phase change materials: A concise review of recent advances, Heat Transf. 50 (2021) 1443–1493. https://doi.org/10.1002/htj.21938.
[77] M. Bashar, K. Siddiqui, Experimental investigation of transient melting and heat transfer behavior of nanoparticle-enriched PCM in a rectangular enclosure, J. Energy Storage 18 (2018) 485–497. https://doi.org/10.1016/j.est.2018.06.006.
[78] S. Tiwari, P.K.S. Rathore, Performance enhancement of solar still for water desalination integrated with thermal energy storage, Mater. Today Proc. 74 (2021) 202–206. https://doi.org/10.1016/j.matpr.2022.08.048.
[79] L. Qiu, Y. Ouyang, Y. Feng, X. Zhang, Review on micro/nano phase change materials for solar thermal applications, Renew. Energy 140 (2019) 513–538. https://doi.org/10.1016/j.renene.2019.03.088.
[80] A.E. Kabeel, M. Abdelgaied, K. Harby, A. Eisa, Augmentation of diurnal and nocturnal distillate of modified tubular solar still having copper tubes filled with PCM in the basin, J. Energy Storage 32 (2020) 101992. https://doi.org/10.1016/j.est.2020.101992.
[81] P. Manoj Kumar, P.T. Saravanakumar, A. Sarojwal, R. Saminathan, D. Harikrishna, S. Jeevan Prasanth, R. Aravinth Pranav, Experimental investigations on the performance of a single slope solar still with thermal energy storage, Mater. Today Proc. (2022). https://doi.org/10.1016/j.matpr.2022.12.221.
[82] G. Kibria, U.K. Paul, S. Mohtasim, B.K. Das, N.N. Mustafi, Characterization, optimization, and performance evaluation of PCM with Al2 O3 and ZnO hybrid nanoparticles for photovoltaic thermal energy storage, (2024).
[83] Y.A. Bhutto, A.K. Pandey, R. Saidur, P.K.S. Rathore, M. Samykano, Hybrid silver-graphene nanoparticles enhanced Lauric Acid phase change material for photovoltaic and thermoelectric generator applications: Experimental and simulation analysis, J. Energy Storage 93 (2024). https://doi.org/10.1016/j.est.2024.112320.
[84] W. Wu, W. Li, H. Han, M. Xu, E. Lu, Z. Wang, C. Zhai, Advanced thermal energy storage made of a ternary CPCM with two phase change temperatures in building walls, Energy Build. 318 (2024) 114445. https://doi.org/10.1016/j.enbuild.2024.114445.
[85] A. Arshad, M. Jabbal, Y. Yan, Preparation and characteristics evaluation of mono and hybrid nano-enhanced phase change materials (NePCMs) for thermal management of microelectronics, Energy Convers. Manag. 205 (2020) 112444. https://doi.org/10.1016/j.enconman.2019.112444.
[86] T. ur Rehman, H.M. Ali, Experimental investigation on paraffin wax integrated with copper foam based heat sinks for electronic components thermal cooling, Int. Commun. Heat Mass Transf. 98 (2018) 155–162. https://doi.org/10.1016/j.icheatmasstransfer.2018.08.003.
[87] R.J. Warzoha, A.S. Fleischer, Improved heat recovery from paraffin-based phase change materials due to the presence of percolating graphene networks, Int. J. Heat Mass Transf. 79 (2014) 314–323. https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.009.
[88] I.P.K. Michael Nitsas *, Laboratory, Performance analysis of nanoparticles-enhanced PCM: An experimental approach, Therm. Sci. Eng. Prog. 25 (2021). https://doi.org/https://doi.org/10.1016/j.tsep.2021.100963.
[89] D. Li, Y. Wu, C. Liu, G. Zhang, M. Arıcı, Energy investigation of glazed windows containing Nano-PCM in different seasons, Energy Convers. Manag. 172 (2018) 119–128. https://doi.org/10.1016/j.enconman.2018.07.015.
[90] A.S. Abdelrazik, F.A. Al-Sulaiman, R. Saidur, Numerical investigation of the effects of the nano-enhanced phase change materials on the thermal and electrical performance of hybrid PV/thermal systems, Energy Convers. Manag. 205 (2020) 112449. https://doi.org/10.1016/j.enconman.2019.112449.