Exploring the performance of a composite membrane with a nanometer-thin selective layer of chitosan-gallic acid for the separation of carbon dioxide

Document Type : Original Research

Authors

Research Laboratory of Increased Oil Recovery and Gas Processing, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran

Abstract
Research subject: Permeability and high selectivity are two important factors of gas separation membranes. To achieve such parameters, gas separation membranes can be modified and improved in terms of material type, material ratio, structure, and etc. For this purpose, in this research, the performance of chitosan-gallic acid/polysulfone thin film composite membranes (TFC) has been improved in CO2 gas separation.

Research approach: To prepare chitosan-gallic acid/polysulfone TFC membranes, a nanometer-scale thin layer of chitosan-gallic acid was formed on the polysulfone support layer (PSF). Following this, chitosan-gallic acid composite thin layer membranes were synthesized with different mass ratios (1:1, 2:1, and 1:2). Various analytical techniques, including Fourier Transform Infrared Spectrometer (FTIR), Field Emission Scanning Electron Microscopy (FESEM), and X-ray Photoelectric Spectroscopy )XPS(, were used to examine the structure of the TFC membranes, alongside CO2/CH4 and CO2/N2 separation tests.

Main results: Examining the chemical structure of the synthesized membranes showed the successful formation of chitosan-gallic acid chains on the PSF surface. The microscopic images of the synthesized membranes showed that a dense thin layer of chitosan-gallic acid was uniformly formed on the PSF support layer. The highest CO2 separation was achieved with a chitosan-gallic acid mass ratio of 1:2. Increasing the gallic acid content in the selective layer of the thin film composite membrane resulted in improved CO2 permeability, increasing from 294.4 GPU and 347.2 GPU for the 1:1 and 2:1 membrane, respectively, to 411.1 GPU for the 1:2 membrane. Additionally, the permeability of CH4 and N2 gases through the thin film composite (1:2) membrane was measured at 24.6 GPU and 19.2 GPU, respectively. The gas selectivity calculations revealed an increase in selectivity for CO2/CH4 and CO2/N2, rising from 13.84 and 17.165 in the 1:1 membrane and 9.684 and 12.969 in the 2:1 membrane to 16.711 and 21.411 in the 1:2 membranes. The results showed that the performance of the chitosan-gallic acid thin layer membrane, which was used for the first time in CO2 separation, was acceptable.

Keywords

Subjects


[1] Kheirtalab M., Abedini R., Ghorbani M., Investigation of Performance of Pebax/Poly(vinyl Alcohol) Blend Membrane for Carbon Dioxide Separation from Nitrogen, Journal of Applied Research of Chemical -Polymer Engineering 3, 57-71, 2020.
[2] Shahrezaei K., Abedini R., Lashkarbolooki M., and Rahimpour A., A Preferential CO2 Separation Using Binary Phases Membrane Consisting of Pebax®1657 and [Omim][PF6] Ionic Liquid, Korean Journal of Chemical Engineering, 36, 2085-2094, 2019.
[3] Siagian U.W.R., Raksajati A., Himma N.F., and Khoiruddin K., Wenten IG., Membrane-Based Carbon Capture Technologies: Membrane Gas Separation vs Membrane Contactor, Journal of Natural Gas Science and Engineering, 67, 172-195, 2019.
[4] Kheirtalab M., Abedini R., Ghorbani M., Pebax/poly (vinyl Alcohol) Mixed Matrix Membrane Incorporated by Amine‐Functionalized Graphene Oxide for CO2 Separation, Journal of Polymer Science, 62, 517-535, 2024.
[5] Aschenbrenner O., and Styring P., Comparative Study of Solvent Properties for Carbon Dioxide Absorption, Energy & Environmental Science, 3(8), 1106-1113, 2010.
[6] Nematollahi M.H., Carvalho P.J., Coutinho J.A.P., Abedini R., Tailoring the CO2 Permeation of Pebax1657/Polyether Imide Thin Film Composite Membrane via Embedding Ag-Based Metal-Organic Framework, Chemical Engineering Research and Design, 197, 109-126, 2023.
[7] Nobakht D., Abedini R., A New Ternary Pebax® 1657/Maltitol/ZIF-8 Mixed Matrix Membrane for Efficient CO2 Separation, Process Safety and Environmental Protection, 170, 709-719, 2023.
[8] Nematollahi M.H., Babaei S., and Abedini R., CO2 Separation over Light Gases for Nano-Composite Membrane Comprising Modified Polyurethane with SiO2 Nanoparticles, Korean Journal of Chemical Engineering, 36, 763-779, 2019.
[9] Bernardo P., Drioli E., and Golemme G., Membrane Gas Separation: a Review/State of the Art, Industrial & engineering chemistry researc, 48(10), 4638-4663, 2009.
[10] Robeson L.M., The Upper Bound Revisited, Journal of Membrane Science, 1(2), 390-400, 2008.
[11] Nematollahi M.H., Carvalho P.J., Coutinho J.A.P., Abedini R., Recent Progress on Pebax-Based Thin Film Nanocomposite Membranes for CO2 Capture: The State of the Art and Future Outlooks, Energy & Fuels, 36, 12367–12428, 2022.
[12] Ranjbar F, Abedini R., Ghorbani M., Ghasemi M., The Experimental/Theoretical Study over the Effect of Using the POP-NH2 Nanostructures into the Membrane Selective Layer on the CO2 Permeability and Selectivity, Chemical Engineering Research and Design, 187, 184-195, 2022.
[13] Doosti M., Abedini R., Polyethyleneglycol-Modified Cellulose Acetate Membrane for Efficient Olefin/Paraffin Separation, Energy & Fuels, 36 (17), 10082–10095, 2022.
[14] Pinnau I., Wijmans J.G., Blume I., Kuroda T., and Peinemann K.V., Gas Permeation Through Composite Membranes, Journal of Membrane Science, 37(1), 81-88, 1988.
[15] Li P., Chen H.Z., and Chung T.S., The Effects of Substrate Characteristics and Pre-Wetting Agents on PAN–PDMS Composite Hollow Fiber Membranes for CO2/N2 and O2/N2 Separation, Journal of Membrane Science, 434, 18-25, 2013.
[16] Ranjbar F, Ghorbani M., Abedini R., Ghasemi M., Thin Film Nanocomposite (TFN) Membrane Comprising Pebax® 1657 and Porous Organic Polymers (POP) for Favored CO2 Separation, Journal of Membrane Science and Research 8 (3), 535579, 2022.
[17] Salestan S.K., Rahimpour A., Abedini R., Experimental and Theoretical Studies of Biopolymers on the Efficient CO2/CH4 Separation of Thin-Film Pebax® 1657 Membrane, Chemical Engineering and Processing-Process Intensification, 163, 108366, 2021.
[18] Liang C.Z., Chung T.S., and Lai J.Y., A Review of Polymeric Composite Membranes for Gas Separation and Energy Production, Progress in Polymer Science, 97, 101141, 2019.
[19] Fakoori M., Azdarpour A., Abedini R., Honarvar B., Effect of Cu-MOFs Incorporation on Gas Separation of Pebax Thin Film Nanocomposite (TFN) Membrane, Korean Journal of Chemical Engineering 38, 121-128, 2021.
[20] Ma C., Wang M., Wang Z., Gao M., and Wang J., Recent Progress on Thin Film Composite Membranes for CO2 Separation, Journal of CO2 Utilization, 42, 101296, 2020.
[21] Dorosti F., Omidkhah M., and Abedini R., Enhanced CO2/CH4 Separation Properties of Asymmetric Mixed Matrix Iembrane by Incorporating Nano-Porous ZSM-5 and MIL-53 Particles into Matrimid® 5218, Journal of Natural Gas Science and Engineering, 25, 88-102, 2015.
[22] Salestan S.K., Pirzadeh K., Rahimpour A., Abedini R., Poly (ether-block amide) Thin-Film Membranes Containing Functionalized MIL-101 MOFs for Efficient Separation of CO2/CH4, Journal of Environmental Chemical Engineering, 9, 105820, 2021.
[23] Chen B., Wan C., Kang X., Chen M., Zhang C., Bai Y., and Dong L., Enhanced CO2 Separation of Mixed Matrix Membranes with ZIF-8@ GO Gomposites as Fillers: Effect of Reaction Time of ZIF-8@ GO, Separation and Purification Technology, 223, 113-122, 2019.
[24] Mozafari M., Rahimpour A., Abedini R., Exploiting the Effects of Zirconium-Based Metal Organic Framework Decorated Carbon Nanofibers to Improve CO2/CH4 Separation Performance of Thin Film Nanocomposite Membranes, Journal of Industrial and Engineering Chemistry, 85, 102-110, 2020.
[25] Babaei S., Nematollahi M.H., Abedini R., Pure and Mixed Gas Permeation Study of Silica Incorporated Polyurethane‐Urea Membrane Modified by MOCA Chain Extender, The Canadian Journal of Chemical Engineering, 98, 1543-1557, 2020.
[26] Seidi F., Haghdust S., Saedi S., and Xu X., Synthesis and Characterization of a New Amino Chitosan Derivative for Facilitated Transport of CO2 through Thin Film Composite Membranes, Macromolecular Research, 24, 1-8, 2016.
[27] Jiang X., Chuah C.Y., Goh K., and Wang R., A Facile Direct Spray-Coating of Pebax® 1657: Towards Large-Scale Thin Film Composite Membranes for Efficient CO2/N2 Separation, Journal of Membrane Science, 638, 119708, 2021.
[28] Xiao S., Feng X., and Huang R.Y .M.,Trimesoyl Chloride Crosslinked Chitosan Membranes for CO2/N2 Separation and Pervaporation Dehydration of Isopropanol, Journal of Membrane Science, 306(1-2), 36-46, 2007.
[29] Gao Z., Wang Y., Wu H., Ren Y., Guo Z., Liang X., Wu Y., Liu Y., and Jiang Z., Surface Functionalization of Polymers of Intrinsic Microporosity (PIMs) Membrane by Polyphenol for Efficient CO2 Separation, Green Chemical Engineering, 2(1), 70-76, 2021.
[30] Saedi S., Nikravesh B., Seidi F., Moradi L., Shamsabadi A.A., Salarabadi M.B., and Salimi H., Facilitated Transport of CO2 through Novel Imidazole-Containing Chitosan Derivative/PES Membranes, RSC Advances, 5(82), 67299-67307, 2015.
[31] Zeng H., Guo J., Zhang Y., Xing D., Yang F., Huang J., Huang S, and Shao L., Green Glycerol Tailored Composite Membranes with Boosted Nanofiltration Performance, Journal of Membrane Science, 663, 121064, 2022.
[32] Chen X.Y., Nik O.G., Rodrigue D., and Kaliaguine S., Mixed Matrix Membranes of Aminosilanes Grafted FAU/EMT Zeolite and Cross-Linked Polyimide for CO2/CH4 Separation, Polymer, 53(15), 3269-3280, 2012.
[33] Waghmode B.J., Soni R., Patil K.R., and Malkhede D.D., Calixarene Based Nanocomposite Materials for High-Performance Supercapacitor Electrode, New Journal of Chemistry, 41, 9752-9761, 2017.
[34] Wang C., Li Z., Chen J., Zhon Y., Ren L., Pu Y., Dong Z., and Wu H., Influence of Blending Zwitterionic Functionalized Titanium Nanotubes on Flux and Anti-Fouling Performance of Polyamide Nanofiltration Membranes, Journal of Materials Science, 53, 10499-10512, 2018.
[35] Do V.T., Tang C.Y., Reinhard M., and Leckie J.O., Degradation of Polyamide Nanofiltration and Reverse Osmosis Membranes by Hypochlorite, Environmental Science & Technology, 46(2), 852-859, 2012.
[36] Liu M., Chen Q., Lu K., Huang W., Lü Z., Zhou C., S Yu, and Gao C., High Efficient Removal of Dyes from Aqueous Solution through Nanofiltration Using Diethanolamine-Modified Polyamide Thin-Film Composite Membrane, Separation and Purification Technology, 173, 135-143, 2017.
[37] Vakili E., Semsarzadeh M.A., Ghalei B., Khoshbin M., and Nasiri H., Characterization and Gas Permeation Properties of Synthesized olyurethane-Polydimethylsiloxane/Polyamide 12-b-Polytetramethylene Glycol Blend Membranes, Silicon, 8, 75-85, 2016.
[38] Choi Y., Kim Y.R., Kang Y.S., and Kang S.W., Enhanced CO2 Separation Performance of Polymer Composite Membranes through the Synergistic Effect of 1, 3, 5-Benzenetricarboxylic Acid, Chemical Engineering Journal, 279, 273-276, 2015.
[39] Deng L., Kim T.L., and Hägg M.B., Facilitated Transport of CO2 in Novel PVAm/PVA Blend Membrane, Journal of Membrane Science, 340, 154-163, 2009.
[40] Nezhadmoghadam E., Pourafshari Chenar M., Omidkhah M., Nezhadmoghadam A, Abedini R., Aminosilane grafted Matrimid 5218/Nano-Silica Mixed Matrix Membrane for CO2/Light Gases Separation, Korean Journal of Chemical Engineering 35, 526-534, 2018.
Fu Q., Halim A., Kim J., Scofield J.M.P., Gurr P.A., Kentish S.E., and Qiao G.G., Highly Permeable Membrane Materials for CO2 Capture, Journal of Materials Chemistry A, 1(44), 13769-13778, 2013.
[41] Jo E.S., An X., Ingole P.G., Choi W.K., and Park Y.S., CO2/CH4 Separation Using inside Coated Thin Film Composite Hollow Fiber Membranes Prepared by Interfacial Polymerization, Chinese Journal of Chemical Engineering, 25(3), 278-287, 2017.
[42] Abedini R., Mosayebi A., Mokhtari M., Improved CO2 Separation of Azide Cross-Linked PMP Mixed Matrix Membrane Embedded by Nano-CuBTC Metal Organic Framework, Process Safety and Environmental Protection, 114, 229-239, 2018.