اصلاح مستقیم سطوح پلی‌اتیلن به وسیله پلاسمای غیرتعادلی جرقه لغزان در فشار اتمسفر با گاز هوا

نوع مقاله : پژوهشی اصیل

نویسندگان

1 گروه فیزیک، دانشکده علوم، دانشگاه بین المللی امام خمینی (ره)

2 پژوهشکده لیزر و پلاسما، دانشگاه شهیدبهشتی تهران

3 گروه مواد، شیمی و پلیمر، مرکز فنی مهندسی بوئین زهرا

چکیده
موضوع تحقیق: سطوح پلی‌اتیلن را اغلب به دلایل مختلفی همانند پاکسازی و حکاکی سطح[1]، تغییر عملکرد سطح و رسوب سطحی اصلاح می‌کنند. یکی از سطوحی که در کاربردهای ظروف بادی می‌بایست اصلاح شود تا چسبندگی مناسب برچسب‌ها به آن محقق شود، سطوح بطری‌های شوینده‌های بهداشتی است که مورد هدف این پژوهش است. در این مقاله از دستگاه پلاسمای جرقه لغزان در فشار اتمسفر با گاز هوا برای اصلاح سطح ورقه‌های پلی‌اتیلن به منظور ایجاد تغییر در ساختار آن‌ها استفاده شده‌است.

روش‌ تحقیق: به منظور بررسی تغییرات ایجاد شده در شیمی و فیزیک سطح پلی‌اتیلن بعد از اصلاح پلاسمایی از آزمون های مختلفی مانند­­­­­­­­­­­ آزمون‌هایAFM ­، SEM وXPS استفاده شده‌است. همچنین آزمون طیف‌سنجی گسیل نوری(OES) برای شناسایی عناصر پلاسما استفاده شده‌است.

نتایج اصلی: زاویه تماس[2] بین قطره آب و سطح پلی‌اتیلن بعد از‌ 40 ثانیه‌ اصلاح به96/46‌ درجه رسیده‌است، در حالی که این زاویه تماس قبل از اصلاح پلاسمایی 53/66 درجه بوده‌است. کاهش در اندازه زاویه تماس قطره آب و سطح نمونه، بیانگر آبدوست شدن سطح پلی‌اتیلن بعد از اصلاح پلاسمایی است. با استفاده از روش ‌Owens-Wendt-Rabel Kaelble انرژی سطحی پلی‌اتیلن قبل و بعد از اصلاح پلاسمایی محاسبه شده‌است. انرژی سطحی پلی‌اتیلن از‌mj.m-2 20/42 در نمونه کنترل به mj.m-2 32/60 در نمونه اصلاح شده افزایش پیدا کرده‌است. افزایش در زبری سطح نمونه اصلاح شده با پلاسمای جرقه لغزان توسط آزمون AFM تأیید شد. زبری سطح پلی‌اتیلن در نمونه کنترل nm18/47 بوده درحالی که، زبری در نمونه اصلاح شده به nm 86/59 افزایش یافته‌است. آزمون XPS حضور گروه‌های‌عاملی اکسیژن‌دار و نیتروژن‌دار را روی سطح نمونه اصلاح شده تأیید کرد. همچنین این آزمون تشکیل پیوندهای C−C=O و C−O−C را در سطح پلی‌اتیلن اصلاح شده، نشان داد.


[1] Cleaning and etching


[2] Contact angle

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Direct modification of polyethylene surfaces using non-equilibrium gliding arc plasma with air at atmospheric pressure

نویسندگان English

Faeze Ghahremannezhad 1
Babak Mohammadhosseini 1
Mohammad Reza Khani 2
Jaber Khanjani 3
1 Department of Physics, Faculty of Science, Imam Khomeini International University (RA)
2 Laser and Plasma Research Institute, Shahid Beheshti University, Tehran
3 Department of Materials, Chemistry and Polymer, Bouin Zahra Engineering Technical Center
چکیده English

Research subjec: Polyethylene surfaces are often modified because of different reasons such as cleaning, etching, change in the performance of the surface, and surficial precipitation. One of the surfaces in the blow molded applications that must be treated in order to be ready for the adhesion of the labels is the surface of the bottle of the hygiene detergents, being the purpose of this research. In this paper, gliding arc plasma device is used at atmospheric pressure with air gas to modify the surface of polyethylene sheets in order to change their structure.

Methods: Various analyzes such as AFM, SEM and XPS tests have been used to investigate the changes in the chemistry and physics of polyethylene surface after plasma modification. Optical emission spectroscopy (OES) has also been used to identify plasma elements.

Findings: The contact angle between the water droplet and the polyethylene surface reached 46.96 ° after 40 s of treatment, while this contact angle was 66.53 °‌ before plasma treatment. The decrease in the contact angle size of the water droplet and the sample surface indicates the hydrophilicity of the polyethylene surface after plasma modification. The surface free energy of polyethylene was calculated before and after plasma modification using the Owens-Wendt-Rabel Kaelble method. The surface energy of polyethylene has increased from 42.20 mj.m-2 in the control sample to 60.32 mj.m-2 in the modified sample. The increase in surface roughness of the modified sample with gliding arc plasma was confirmed by AFM test. The surface roughness of polyethylene in the control sample was 47.18 nm, while the roughness in the modified sample increased to 59.86 nm. The XPS test confirmed the presence of oxygenated and nitrogenous functional groups on the surface of the modified sample. This test also showed the formation of C−C=O and C−O−C bonds on PE surface.

کلیدواژه‌ها English

Plasma gliding arc
Polyethylene
Surface energy
Hydrophilicity
Surface roughness
1. Namazi H., BioImpacts, Polymers in our daily life, Bioimpacts 7, 73-74, 2017.
2. Gopanna A., Rajan K. P., Thomas S.P., and Chavali M., Polyethylene and polypropylene matrix composites for biomedical applications, Materials for Biomedical Engineering: Thermoset and Thermoplastic Polymers., 175-216, 2019.
3. Nemani S.K., Annavarapu R.K., Mohammadian B., Raiyan A., Heil J., Haque Md.A., Abdelaal A., and Sojoudi H., Surface Modification of Polymers: Methods and Applications, Advanced Materials Interfaces, 1801247, 2018.
4. Yasuda H., Plasma for Modification of Polymers, Journal of Macromolecular Science Part A – Chemistry, 10, 383-420, 1976.
5. Guruvenket S., Mohan Rao G., Komath M., and Raichur A.M., Plasma surface modification of polystyrene and polyethylene, Applied Surface Science, 236, 278–284, 2004.
6. Vesel A., and Mozetic M., Surface modification and ageing of PMMA polymer by oxygen plasma treatment, Vacuum, 86, 634-637, 2012.
7. Park S.J., and Jin J.S., Effect of Corona Discharge Treatment on the Dyeability of Low-Density Polyethylene Film, Journal of Colloid and Interface Science, 236, 155–160, 2001.
8. Sun C., Zhang D., and Wadsworth L.C., Corona treatment of polyolefin films-A review, Advances in Polymer Technology, 18, 171-180, 1999.
9. Rocca-Smith J.R., Karbowiak T., Marcuzzo E., Sensidoni A., Piasente F., Champion D., Heinz O., Vitry P., Bourillot E., Lesniewska E., and Debeaufort F., Impact of corona treatment on PLA film properties, Polymer Degradation and Stability, S0141391016300726, 2016.
10. Chen J., Iwata H., Tsubokawa N., Maekawa Y., and Yoshida M., Novel vapor senpr from polymer-grafted carbon black: effects of heat-treatment and γ-ray radiation-treatment on the response of sensor material in cyclohexane vapor, Polymer, 43, 2201-2206, 2002.
11. Khan M.A., Haque N., Al-Kafi A., Alam M.N., and Abedin M.Z., Jute Reinforced Polymer Composite by Gamma Radiation: Effect of Surface Treatment with UV Radiation, Polymer-Plastics Technology and Engineering, 45, 607–613, 2006.
12. Valenza A., Visco A.M., Torrisi L., and Campo N., Characterization of ultra-high-molecular-weight polyethylene (UHMWPE) modified by ion implantation, Polymer, 45, 1707–1715, 2004.
13. Maletic S.B., Cerovic D.D., and Dojcilovic J.R., A study of structural and spectral properties of ion-beam modified polyethylene terephthalate membrane, Nuclear Inst. and Methods in Physics Research B, 441, 1–7, 2019.
14. Kostov K.G., Ueda M., Tan I.H., Leite N.F., Beloto A.F., and Gomes G.F., Structural effect of nitrogen plasma-based ion implantation on ultra-high molecular weight polyethylene, Surface & Coatings Technology,186, 287–290, 2004.
15. Fang Z., Yang J., Liu Y., Shao T., and Zhang C., Surface Treatment of Polyethylene Terephthalate to Improving Hydrophilicity Using Atmospheric Pressure Plasma Jet, IEEE Transactions on Plasma Science, 41, 1627-1634, 2013.
16. Junkar I., Vesel A., Cvelbar U., Mozetic M., and Strnad S., Influence of oxygen and nitrogen plasma treatment on polyethylene terephthalate (PET) polymers, Vacuum, 84, 83–85, 2010.
17. Lehocky´ M., Drnovska H., Lapcıkova B., BarrosTimmons A.M., Trindade T., Zembala M., and Lapcık L., Plasma surface modification of polyethylene, Colloids and Surfaces A: Physicochem. Eng. Aspects, 222, 125-131, 2003.
18. Darvish F., Mostofi Sarkari N., Khani M.R., Eslami E., Shokri B., Mohseni M., Ebrahimi M., Alizadeh M., and Fu Dee C., Direct plasma treatment approach based on non-thermal gliding arc for surface modification of biaxially-oriented polypropylene with post-exposure hydrophilicity improvement and minus aging effects, Applied Surface Science, 144815, 2019.
19. Mostofi Sarkari N., Darvish F., Mohseni M., Ebrahimi M., Khani M.R., Eslami E., Shokri B., Alizadeh M., and Fu Dee C., Surface characterization of an organosilane-grafted moisture-crosslinked polyethylene compound treated by air atmospheric pressure non-equilibrium gliding arc plasma, Applied Surface Science, 490, 436–450, 2019.
20. Azar D., Lott J.T., Jabbarzadeh E., Shazly T., and Kolachalama V.B., Surface Modification Using Ultraviolet-Ozone Treatment Enhances Acute Drug Transfer in Drug-Coated Balloon Therapy, Langmuir, 36, 4645−4653, 2020.
21. Sateesh A., Vogel J., Dayss E., Fricke B., Dolling K., and Rothe U., Surface modification of medical-grade polyurethane by cyanurchloride-activated tetraether lipid (a new approach for bacterial antiadhesion), Journal of Biomedical Materials Research Part A, 84A, 672-681, 2008.
22. Liu R., Li X., Hu X., and Dong H., Surface modification of a medical grade Co‐Cr‐Mo alloy by low-temperature plasma surface alloying with nitrogen and carbon, Surface & Coatings Technology, 232, 906–911, 2013.
23. Buhagiar J., and Dong H., Low-Temperature Plasma Surface Modification of Medical Grade Austenitic Stainless Steel to Combat Wear and Corrosion, Key Engineering Materials, 373-374, 296-299, 2008.
24. Morent R., De Geyter N., Verschuren J., De Clerck K., Kiekens P., and Leys C., Non-thermal plasma treatment of textiles, Surface & Coatings Technology, 202, 3427–3449, 2008.
25. Friedrich J., The Plasma Chemistry of Polymer Surfaces Advanced Techniques for Surface Design, Wiley-VCH Verlag & Co. KGaA, Berlin, First ed, 2012.
26. Mansuroglu D., and Uzun-Kaymak I.U., Argon and nitrogen plasma modified polypropylene: Surface characterization along with the optical emission results, Surface & Coatings Technology, 358, 551–559, 2019.
27. Shiki H., Motoki J., Ito Y., Takikawa H., Ootsuka T., Okawa T., Yamanaka S., Usuki E., Nishimura Y., Hishida S., and Sakakibara T., Development of split gliding arc for surface treatment of conductive material, Thin Solid Films, 516, 3684–3689, 2008.
28. Kusano Y., Teodoru S., Leipold F., Andersen T.L., Sørensen B.F., Rozlosnik N., and Michelsen P.K., Gliding arc discharge—Application for adhesion improvement offibre reinforced polyester composites, Surface & Coatings Technology, 202, 5579–5582, 2008.
29. Feng Z., Saeki N., Kuroki T., Tahara M., and Okubo M., Surface modification by nonthermal plasma induced by using magnetic-field-assisted gliding arc discharge, Applied Physics Letters, 101, 041602, 2012.
30. Pandiyaraj K.N., Selvarajan V., Deshmukh R.R., Yoganand C.P., Balasubramanian S., and Maruthamuthu S., Low Pressure DC Glow Discharge Air Plasma Surface Treatment of Polyethylene (PE) Film for Improvement of Adhesive Properties, Plasma Science and Technology, 15, 56-63, 2013.
31. Langheinrich AP., and Roberts D.B., Modern Methods of Geochemical Analysis, R. E. Wainerdi et al. (eds.) Springer, Boston, MA,169-204. 1972.
32. Mohammadi F., Isaei E., and Ali F., Concepts and Principles of X-ray Photoelectron Spectroscopy (XPS), Iranian Journal of Laboratory Knowledge, 5, 29-39, 2018.
33. Vitos L., Ruban A.V., Skriver H.L., and Kolla´r J., The surface energy of metals, Surface Science, 411, 186–202, 1998.
34. Michalski M.C., Hardy J., and Saramago B.J.V., On the Surface Free Energy of PVC/EVA Polymer Blends:Comparison of Different Calculation Methods, Journal of colloid and interface science, 208, 319 –328, 1998.
35. Hebbar R.S., Isloor A.M., and Ismail A.F., Contact Angle Measurements, Elsevier, 219-255, 2017.
36. Vujoševi D., Mozeti M., Cvelbar U., Krstulovi N., and Miloševi S., Optical emission spectroscopy characterization of oxygen plasma during degradation of Escherichia coli, : Journal of Applied Physics, 101, 103305 ,2007.
37. Qayyum A., Zeb S., Ali S., Waheed A., and Zakaullah M., Optical Emission Spectroscopy of Abnormal Glow Region in Nitrogen Plasma, Plasma Chemistry and Plasma Processing, 25, 551-564, 2005.
38. Tewari S.V., Kshirsagar R.J., Roy A., Sarathi R., Sharma A., and Mittal K.C., Optical emission spectroscopy study on flashover along insulator surface due to particle contamination, Laser and Particle Beams, 32, 681–689, 2014.
39. Saadati F., Mahdikia H., Abbaszadeh H.A., Abdollahifar M.A., Khoramgah M.S., and Shokri B., Comparison of Direct and Indirect cold atmospheric-pressure plasma methods in the B16F10 melanoma cancer cells treatment, Scientific Reports, 8, 7689, 2018.
40. Kobashi K., Diamond Films: Chemical Vapor Deposition for Oriented and Heteroepitaxial Growth, Elsevier Ltd, Oxford, first ed, 121-153, 2005.
41. Vujoševi D., Mozeti M., Cvelbar U., Krstulovi N., and Miloševi S., Optical emission spectroscopy characterization of oxygen plasma during degradation of Escherichia coli, : Journal of Applied Physics, 101, 103305 ,2007.
42. Song M. A., Lee Y.W., and Chung T.H., Characterization of an inductively coupled nitrogen-argon plasma by Langmuir probe combined with optical emission spectroscopy, Physics of Plasmas, 18, 023504, 2011.
43. Eshaghi A., and Aghaei R., Super-thin layers of hydrophilic and antiseptic, Journal of Iranian Ceramic Society, 48, 59-71, 2016