[1] R. Gharibshahi, A. Jafari, and H. Ahmadi, “CFD investigation of enhanced extra-heavy oil recovery using metallic nanoparticles/steam injection in a micromodel with random pore distribution,” J. Pet. Sci. Eng., vol. 174, pp. 374–383, Mar. 2019, doi: 10.1016/j.petrol.2018.10.051.
[2] R. Gharibshahi, M. Omidkhah, and A. Jafari, “Parametric Optimization of In-Situ Heavy Oil Upgrading Using Simultaneous Microwave Radiation and Magnetic Nanohybrids Via Taguchi Approach,” SSRN Electron. J., 2022, doi: 10.2139/ssrn.4017218.
[3] A. Bera and T. Babadagli, “Status of electromagnetic heating for enhanced heavy oil/bitumen recovery and future prospects: A review,” Applied Energy, vol. 151. Elsevier Ltd, pp. 206–226, Aug. 01, 2015, doi: 10.1016/j.apenergy.2015.04.031.
[4] M. Z. Hasanvand and A. Golparvar, “A critical review of improved oil recovery by electromagnetic heating,” Petroleum Science and Technology, vol. 32, no. 6. pp. 631–637, Mar. 19, 2014, doi: 10.1080/10916466.2011.592896.
[5] M. A. Carrizales, “Copyright by Maylin Alejandra Carrizales,” Russell J. Bertrand Russell Arch., 2010.
[6] C. Saltiel and A. K. Datta, Heat and Mass Transfer in Microwave Processing, vol. 33, no. C. 1999.
[7] H. Farshadfar, H. Shamsi Armandi, R. Gharibshahi, and A. Jafari, “Simultaneous electromagnetic radiation and nanofluid injection and their interactions in EOR operations: A comprehensive review,” J. Magn. Magn. Mater., vol. 580, no. June, p. 170863, 2023, doi: 10.1016/j.jmmm.2023.170863.
[8] J. Taheri-shakib, A. Shekarifard, and H. Naderi, “Experimental investigation of the asphaltene deposition in porous media: Accounting for the microwave and ultrasonic effects,” J. Pet. Sci. Eng., 2018, doi: 10.1016/j.petrol.2018.01.017.
[9] A. Karimov, V. Bogdanov, R. Valiullin, R. Sharafutdinov, and A. Ramazanov, “The Degassing Processes for Oil Media in Acoustic Fields and Their Applications,” Polymers (Basel)., vol. 14, no. 8, 2022, doi: 10.3390/polym14081497.
[10] S. A. Shedid and S. R. Attallah, “Influences of Ultrasonic Radiation on Asphaltene Behavior With and Without Solvent Effects,” SPE Int. Form. Damage Control Symp. Proc., 2004, doi: 10.2523/86473-ms.
[11] Z. Wang and Y. Xu, “The development of recent high-power ultrasonic transducers for Near-well ultrasonic processing technology,” Ultrason. Sonochem., vol. 37, pp. 536–541, 2017, doi: 10.1016/j.ultsonch.2017.01.043.
[12] Z. Wang, Y. Xu, and B. Suman, “Research status and development trend of ultrasonic oil production technique in China,” Ultrason. Sonochem., vol. 26, pp. 1–8, 2015, doi: 10.1016/j.ultsonch.2015.01.014.
[13] B. Keshavarzi, R. Karimi, and I. Naja, “Investigating the role of ultrasonic wave on two-phase relative permeability in a free gravity drainage process,” vol. 21, pp. 763–771, 2014.
[14] V. O. Abramov, M. S. Mullakaev, A. V Abramova, I. B. Esipov, and T. J. Mason, “Ultraso nics Sonoch emistry Ultrasonic technology for enhanced oil recovery from failing oil wells and the equipment for its implemention,” Ultrason. - Sonochemistry, vol. 20, no. 5, pp. 1289–1295, 2013, doi: 10.1016/j.ultsonch.2013.03.004.
[15] S. H. Shafiai and A. Gohari, “Conventional and electrical EOR review: the development trend of ultrasonic application in EOR,” J. Pet. Explor. Prod. Technol., vol. 10, no. 7, pp. 2923–2945, 2020, doi: 10.1007/s13202-020-00929-x.
[16] J. Taheri-shakib, A. Shekarifard, and H. Naderi, “The experimental investigation of effect of microwave and ultrasonic waves on the key characteristics of heavy crude oil,” J. Anal. Appl. Pyrolysis, 2017, doi: 10.1016/j.jaap.2017.10.021.
[17] J. Taheri-Shakib, A. Shekarifard, and H. Naderi, “The experimental investigation of effect of microwave and ultrasonic waves on the key characteristics of heavy crude oil,” J. Anal. Appl. Pyrolysis, vol. 128, pp. 92–101, 2017, doi: 10.1016/j.jaap.2017.10.021.
[18] L. I. Petrella, L. E. Maggi, R. M. Souza, A. V. Alvarenga, and R. P. B. Costa-Félix, “Influence of subcutaneous fat in surface heating of ultrasonic diagnostic transducers,” Ultrasonics, vol. 54, no. 6, pp. 1476–1479, 2014, doi: 10.1016/j.ultras.2014.04.018.
[19] R. Tao and H. Tang, “Reducing viscosity of paraffin base crude oil with electric field for oil production and transportation,” Fuel, vol. 118, pp. 69–72, 2014, doi: 10.1016/j.fuel.2013.10.056.
[20] I. Zojaji, A. Esfandiarian, J. Taheri-shakib, and A. Esfandiarian, “Toward molecular characterization of asphaltene from different origins under different conditions by means of FT-IR spectroscopy,” Adv. Colloid Interface Sci., 2020.
[21] J. Taheri-shakib, A. Shekarifard, and H. Naderi, “Journal of Analytical and Applied Pyrolysis Analysis of the asphaltene properties of heavy crude oil under ultrasonic and microwave irradiation,” J. Anal. Appl. Pyrolysis, vol. 129, no. November 2017, pp. 171–180, 2018, doi: 10.1016/j.jaap.2017.11.015.
[22] R. Gharibshahi, M. Omidkhah, A. Jafari, and N. Mehrooz, “Parametric optimization of in-situ heavy oil upgrading using simultaneous microwave radiation and magnetic nanohybrids via Taguchi approach,” Fuel, vol. 325, no. April, p. 124717, 2022, doi: 10.1016/j.fuel.2022.124717.
[23] H. Shamsi Armandi, A. Jafari, R. Gharibshahi, and M. Omidkhah, “Application of electromagnetic waves and their effects on ‘rock-fluid’ and ‘fluid-fluid’ interactions in enhanced oil recovery,” Sci. Propagative J. Oil Gas Explor. Prod., vol. 171, pp. 40–48, 2019.