[1] Krache R. and Debah I., Some mechanical and thermal properties of PC/ABS blends, Materials Sciences and Applications, 2 (5), 404-410, 2011.
[2] Kausar A., A review of filled and pristine polycarbonate blends and their applications, Journal of Plastic Film & Sheeting, 34 (1), 60-97, 2018.
[3] Tasdemir M., Properties of Acrylonitrile–Butadiene–Styrene/Polycarbonate blends with Styrene–Butadiene–Styrene block copolymer, Journal of Applied Polymer Science, 93 (6), 2521 – 2527, 2004.
[4] Robeson L. M., Polymer blends: A comprehensive review, Hanser, Munich, First Edition, 172-179, 2007.
[5] Thomas S., Shanks R. and Chandrasekharakurup S., Design and applications of nanostructured polymer blends and nanocomposite systems, Elsevier, Oxford, First Edition, 15-38, 2016.
[6] Pawlowski K. H. and Schartel B., Flame retardancy mechanisms of triphenyl phosphate, resorcinol bis(diphenyl phosphate) and bisphenol A bis(diphenyl phosphate) in polycarbonate/acrylonitrile–butadiene–styrene blends, Polymer International, 56 (11), 1404-1414, 2007.
[7] Hentati F., Barhoumi N. and Khlifi K., Characterization of the surface properties and adhesion behavior of electroplated PC/ABS using nano-indentation and scratch tests, Journal of Adhesion Science and Technology, 37(25), 1724-1735, 2022.
[8] dos Anjos E. G. R., Vieira L. S., Marini J. and Brazil T. R., Influence of Graphene Nanoplates and ABS-g-MAH on the Thermal, Mechanical, and Electromagnetic Properties of PC/ABS Blend, Journal of Applied Polymer Science, 139(3), 51500, 2021.
[9] Sun Y., Guo Z. X. and Yu J., Effect of ABS rubber content on the localization of MWCNTs in PC/ABS blends and electrical resistivity of the composites, Macromolecular Materials and Engineering, 295 (3), 263-268, 2010.
[10] Ghasemi I., Minaei Zaeim M. and Riahinezhad M., Mechanical properties of polymers and composites, Iran Polymer and Petrochemical Institute, Tehran, Second Edition, 2-4, 2016.
[11] Guo B., Tang Z. and Zhang L., Transport performance in novel elastomer nanocomposites: mechanism, design and control, Progress in Polymer Science, 61, 29-66, 2016.
[12] Cui Y., Kundalwal S. I. and Kumar S., Gas barrier performance of Graphene/Polymer nanocomposites, Carbon, 98, 313-333, 2016.
[13] Yarahmadi E., Didehban K., Shabanian M. and Saeb M. R., Assessing the crosslinking behavior of nanocomposites based on epoxy and starch-modified graphene oxide nanosheets potent to be applied as engineering coatings, Applied Research in Chemical – Polymer Engineering, 1(1), 61-70, 2017.
[14] Tambrallimath V., Keshavamurthy R., Bavan S., Patil A., Yunus Khan T. M., Badruddin I. A. and Kamangar S., Mechanical properties of PC-ABS-Based Graphene-reinforced polymer nanocomposites fabricated by FDM Process, Polymers, 13 (17), 2951, 2021.
[15] dos Anjos E. G. R., Vieira L. D. S., Marini J., Brazil T. R., Gomes N. A. S., Rezende M. C. and Passador F. R., Influence of Graphene nanoplates and ABS-g-MAH on the thermal, mechanical, and electromagnetic properties of PC/ABS blend, Journal of Applied Polymer Science, 139 (3), 51500, 2022.
[16] Pour R. H., Hassan A., Soheilmoghaddam M. and Cheraghi Bidsorkhi H., Mechanical, thermal, and morphological properties of graphene reinforced polycarbonate/acrylonitrile butadiene styrene nanocomposites, Polymer Composites, 37(6), 1633-1640, 2016.
[17] Li Y., Wang A., Meng L. and Jiang N., Preparation of graphene and its application in polycarbonate/acrylonitrile-butadiene-styrene composites, Journal of Polymer Engineering, 38(4), 399-407, 2018.
[18] Andrzejewski J., Mohanty A. K. and Misra M., Development of hybrid composites reinforced with biocarbon/carbon fiber system. The comparative study for PC, ABS and PC/ABS based materials, Composites Part B: Engineering, 200, 108319, 2020.
[19] Takemori M. T., Towards an understanding of the heat distortion temperature of thermoplastics, Polymer Engineering & Science, 19 (15), 1104-1109, 1979.
[20] Abubakar A. M., Biryan F. and Demirelli K., Electrical properties, characterization, and preparation of composite materials containing a polymethacrylate with α-naphthyl side group and nanographene fillers, Journal of Thermoplastic Composite Materials, 34 (1), 102-125, 2021.
[21] Rissanou A. N., Bacova P. and Harmandaris V., Investigation of the properties of nanographene in polymer nanocomposites through molecular simulations: dynamics and anisotropic Brownian motion, Physical Chemistry Chemical Physics, 21, 23843-23854, 2019.
[22] Alipour A., Giffney T., Lin R. J. T. and Jayaraman K., Effects of matrix viscosity on morphological and rheological properties and the electrical percolation threshold in graphene/epoxy nanocomposites, eXPRESS Polymer Letters, 15 (6), 541-553, 2021.
[23] Han C. D., Rheology and processing of polymeric materials: Volume 1: Polymer rheology, Oxford University Press, Oxford, First Edition, 547-614, 2007.
[24] Dal Lago E., Cagnin E., Boaretti C. and Roso M., Influence of different Carbon-Based fillers on electrical and mechanical properties of a PC/ABS blend, Polymers, 12 (1), 29, 2020.
[25] Hemmati M., Shariatpanahi H., Fereidoon A., Aalaie j. and Ghorbanzadeh Ahangari M., Study of a polymer blend/nanoclay nanocomposite of Polyethylene and Polyamide 6 prepared by mechanical blending, Polymer-Plastics Technology and Engineering, 51 (1), 80-85, 2012.