[1] Selby, R., Alikhan, A. A., & Ali, S. M. F. (1989). Potential Of Non-Thermal Methods For Heavy Oil Recovery. Journal of Canadian Petroleum Technology, 28(04). https://doi.org/10.2118/89-04-02
[2] Mai, A., Bryan, J., Goodarzi, N., & Kantzas, A. (2009). Insights Into Non-Thermal Recovery of Heavy Oil. Journal of Canadian Petroleum Technology, 48(03), 27–35. https://doi.org/10.2118/09-03-27
[3] Chen, Y., Xie, Q., Pu, W., & Saeedi, A. (2018). Drivers of pH increase and implications for low salinity effect in sandstone. Fuel, 218, 112–117. https://doi.org/https://doi.org/10.1016/j.fuel.2018.01.037
[4] Sagbana, P. I., Sarkodie, K., & Nkrumah, W. A. (2022). A critical review of carbonate reservoir wettability modification during low salinity waterflooding. Petroleum. https://doi.org/https://doi.org/10.1016/j.petlm.2022.01.006
[5] Tajikmansori, A., Hossein Saeedi Dehaghani, A., & Haghighi, M. (2022). Improving chemical composition of smart water by investigating performance of active cations for injection in carbonate Reservoirs: A mechanistic study. Journal of Molecular Liquids, 348, 118043. https://doi.org/https://doi.org/10.1016/j.molliq.2021.118043
[6] Saeedi Dehaghani, A. H., & Ghalamizade Elyaderani, S. M. (2021). Application of ion-engineered Persian Gulf seawater in EOR: effects of different ions on interfacial tension, contact angle, zeta potential, and oil recovery. Petroleum Science. https://doi.org/10.1007/s12182-020-00541-y
[7] Salehi, N., Saeedi Dehaghani, A., & Haghighi, M. (2023). Investigation of fluid-fluid interaction between surfactant-ion-tuned water and crude oil: A new insight into asphaltene behavior in the emulsion interface. Journal of Molecular Liquids, 376, 121311. https://doi.org/https://doi.org/10.1016/j.molliq.2023.121311
[8] Tajikmansori, A., Hosseini, M., & Dehaghani, A. H. S. (2021). Mechanistic study to investigate the injection of surfactant assisted smart water in carbonate rocks for enhanced oil recovery: An experimental approach. Journal of Molecular Liquids, 325, 114648. https://doi.org/https://doi.org/10.1016/j.molliq.2020.114648
[9] Saeedi Dehaghani, A. H., & Badizad, M. H. (2019). Impact of ionic composition on modulating wetting preference of calcite surface: Implication for chemically tuned water flooding. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 568, 470–480. https://doi.org/https://doi.org/10.1016/j.colsurfa.2019.02.009
[10] Ghalamizade Elyaderani, S. M., Saeedi Dehaghani, A. H., & Razavinezhad, J. (2023). Tuned Low-Salinity Waterflooding in Carbonate Reservoirs: Impact of Cr2O72-, C6H5COO-, and SO42-. SPE Journal, 1–14. https://doi.org/10.2118/214299-PA
[11] Al-Nofli, K., Pourafshary, P., Mosavat, N., & Shafiei, A. (2018). Effect of Initial Wettability on Performance of Smart Water Flooding in Carbonate Reservoirs—An Experimental Investigation with IOR Implications. Energies 2018, Vol. 11, Page 1394, 11(6), 1394. https://doi.org/10.3390/EN11061394
[12] Sohal, M. A., Thyne, G., & Søgaard, E. G. (2016). Review of Recovery Mechanisms of Ionically Modified Waterflood in Carbonate Reservoirs. Energy & Fuels, 30(3), 1904–1914. https://doi.org/10.1021/acs.energyfuels.5b02749
[13] Mahmoudvand, M., Javadi, A., & Pourafshary, P. (2019). Brine ions impacts on water-oil dynamic interfacial properties considering asphaltene and maltene constituents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 579, 123665.
https://doi.org/https://doi.org/10.1016/j.colsurfa.2019.123665
[14] Sagbana, P. I., Sarkodie, K., & Nkrumah, W. A. (2022). A critical review of carbonate reservoir wettability modification during low salinity waterflooding. Petroleum. https://doi.org/https://doi.org/10.1016/j.petlm.2022.01.006
[15] Mahani, H., Keya, A. L., Berg, S., Bartels, W. B., Nasralla, R., & Rossen, W. R. (2015). Insights into the mechanism of wettability alteration by low-salinity flooding (LSF) in carbonates. Energy and Fuels, 29(3), 1352–1367. https://doi.org/10.1021/EF5023847/SUPPL_FILE/EF5023847_SI_001.PDF
[16] Liu, F., & Wang, M. (2020). Review of low salinity waterflooding mechanisms: Wettability alteration and its impact on oil recovery. Fuel, 267, 117112. https://doi.org/https://doi.org/10.1016/j.fuel.2020.117112
[17] Sharma, H., & Mohanty, K. K. (2018). An experimental and modeling study to investigate brine-rock interactions during low salinity water flooding in carbonates. Journal of Petroleum Science and Engineering, 165, 1021–1039. https://doi.org/https://doi.org/10.1016/j.petrol.2017.11.052
[18] Saw, R. K., & Mandal, A. (2020). A mechanistic investigation of low salinity water flooding coupled with ion tuning for enhanced oil recovery. RSC Advances, 10(69), 42570–42583. https://doi.org/10.1039/D0RA08301A
[19] Honarvar, B., Rahimi, A., Safari, M., Rezaee, S., & Karimi, M. (2020). Favorable attributes of low salinity water aided alkaline on crude oil-brine-carbonate rock system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 585, 124144. https://doi.org/https://doi.org/10.1016/j.colsurfa.2019.124144
[20] Gandomkar, A., & Rahimpour, M. R. (2017). The impact of monovalent and divalent ions on wettability alteration in oil/low salinity brine/limestone systems. Journal of Molecular Liquids, 248, 1003–1013. https://doi.org/https://doi.org/10.1016/j.molliq.2017.10.095
[21] Ghalamizade Elyaderani, S. M., Jafari, A., & Razavinezhad, J. (2019). Experimental Investigation of Mechanisms in Functionalized Multiwalled Carbon Nanotube Flooding for Enhancing the Recovery From Heavy-Oil Reservoirs. SPE Journal. https://doi.org/10.2118/194499-PA
[22] Ghalamizade Elyaderani, S. M., & Jafari, A. (2020). Investigation of interactions between silica nanoparticle, alkaline, and polymer in micromodel flooding for enhanced oil recovery. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–18. https://doi.org/10.1080/15567036.2020.1811428
[23] Moosavi, S. R., Rayhani, M., Malayeri, M. R., & Riazi, M. (2019). Impact of monovalent and divalent cationic and anionic ions on wettability alteration of dolomite rocks. Journal of Molecular Liquids, 281, 9–19. https://doi.org/10.1016/J.MOLLIQ.2019.02.078
[24] Xu, P., Wang, H., Tong, R., Du, Q., & Zhong, W. (2006). Preparation and morphology of SiO2/PMMA nanohybrids by microemulsion polymerization. Colloid and Polymer Science, 284(7), 755–762. https://doi.org/10.1007/s00396-005-1428-9
[25] Farhadi, H., Ayatollahi, S., & Fatemi, M. (2021). The effect of brine salinity and oil components on dynamic IFT behavior of oil-brine during low salinity water flooding: Diffusion coefficient, EDL establishment time, and IFT reduction rate. Journal of Petroleum Science and Engineering, 196, 107862. https://doi.org/https://doi.org/10.1016/j.petrol.2020.107862
[26] Lashkarbolooki, M., Ayatollahi, S., & Riazi, M. (2017). Mechanistical study of effect of ions in smart water injection into carbonate oil reservoir. Process Safety and Environmental Protection, 105, 361–372. https://doi.org/https://doi.org/10.1016/j.psep.2016.11.022