1) Edwards, L. The history and future challenges of calcined petroleum coke production and use in aluminum smelting. Jom, 67, 308-321, 2015.
2) Boateng, A. A. Rotary kilns: transport phenomena and transport processes. Butterworth-Heinemann, 2015.
3) Lyons, J. W., Min, H. S., Parisot, P. E., & Paul, J. F. Experimentation with a wet-process rotary cement kiln via the analog computer. Industrial & Engineering Chemistry Process Design and Development, 1, 29-33, 1962.
4) Li, K. W. Entrainment in rotary cylinders. AIChE Journal, 20, 1031-1034, 1974.
5) Essenhigh, R. H., Froberg, R., & Howard, J. B. Combustion behavior of small particles. Industrial & Engineering Chemistry, 57, 32-43, 1965.
6) Modak, A. T. Radiation from products of combustion. Fire Safety Journal, 1, 339-361, 1979.
7) Tscheng, S. H., & Watkinson, A. P. Convective heat transfer in a rotary kiln. The Canadian Journal of Chemical Engineering, 57, 433-443, 1979.
8) Gorog, J. P., Adams, T. N., & Brimacombe, J. K. Regenerative heat transfer in rotary kilns. Metallurgical transactions B, 13, 153-163, 1982.
9) Bui, R. T., Tarasiewicz, S., & Charette, A. A computer model for the cement kiln. IEEE Transactions on Industry Applications, 4, 424-430, 1982.
10) Perron, J., & Bui, R. T. Rotary cylinders: solid transport prediction by dimensional and rheological analysis. The Canadian Journal of Chemical Engineering, 68, 61-68, 1990.
11) Perron, J., Nguyen, H. T., & Bui, R. T. Modélisation d'un four de calcination du coke de pétrole: II. Simulation du procédé. The Canadian Journal of Chemical Engineering, 70, 1120-1131, 1992.
12) Bui, R. T., Perron, J., & Read, M. Model-based optimization of the operation of the coke calcining kiln. Carbon, 31, 1139-1147, 1993.
13) Martins, M. A., Oliveira, L. S., & Franca, A. S. Modeling and simulation of petroleum coke calcination in rotary kilns. Fuel, 80, 1611-1622, 2001.
14) Csernyei, C., & Straatman, A. G. Numerical modeling of a rotary cement kiln with improvements to shell cooling. International Journal of Heat and Mass Transfer, 102, 610-621, 2016.
15) Mujumdar, K. S., & Ranade, V. V. Simulation of rotary cement kilns using a one-dimensional model. Chemical engineering research and design, 84, 165-177, 2006.
16) Elkanzi, E. M., Marhoon, F. S., & Jasim, M. J. Rate-based Simulation of Coke Calcination in Rotary Kilns. Simultech, 5-10, 2012.
17) Elkanzi, E. M., Marhoon, F. S., & Jasim, M. J. Kinetic Analysis of the Coke Calcination Processes in Rotary Kilns. In Simulation and Modeling Methodologies, Technologies and Applications, Springer, Cham, 45-54, 2014.
18) Bui, R. T., Simard, G., Charette, A., Kocaefe, Y., & Perron, J. Mathematical modeling of the rotary coke calcining kiln. The Canadian journal of chemical engineering, 73, 534-545, 1995.
19) Atmaca, A., & Yumrutaş, R. Analysis of the parameters affecting energy consumption of a rotary kiln in cement industry. Applied Thermal Engineering, 66, 435-444, 2014.
20) Zhang, Z., & Wang, T. Simulation of Combustion and Thermal-Flow Inside a Petroleum Coke Rotary Calcining Kiln: Part 2—Analysis of Effects of Tertiary Airflow and Rotation. In ASME International Mechanical Engineering Congress and Exposition, 43765, 211-223, 2009.
21) Zhang, Z., & Wang, T. Simulation of Combustion and Thermal-Flow Inside a Petroleum Coke Rotary Calcining Kiln—Part I: Process Review and Modeling, 2010.
22) Ryan, J., Bussmann, M., & DeMartini, N. CFD Modelling of Calcination in a Rotary Lime Kiln. Processes, 10, 1516. 2022.
23) Versteeg, H. K., & Malalasekera, W. An introduction to computational fluid dynamics: the finite volume method. Pearson education, 2007.