حذف فتوکاتالیستی متری‌بوزین با استفاده از نانوکامپویت دی‌اکسید تیتانیوم/نقره

نوع مقاله : پژوهشی اصیل

نویسندگان

گروه شیمی دانشگاه شهید چمران اهواز

چکیده
موضوع تحقیق: در مطالعه حاضر، نانوکامپوزیت‌های دی‌اکسید تیتانیوم/نقره (TiO2/Ag) به روش سل-ژل سنتز و عملکرد آنها برای حذف فوتوکاتالیستی متری‌بوزین با کاتالیزورهای TiO2 تجاری P25 Degussa مقایسه شده‌است.

روش تحقیق: نانوکامپوزیت‌های سنتز شده با استفاده از طیف سنجی پراش پرتو ایکس (XRD)، میکروسکوپ الکترونی روبشی نشر میدانی (FESEM)، و تجزیه و تحلیل پرتو ایکس پراکنده انرژی (EDX) آنالیز شده‌اند. تأثیر پارامترهای عملیاتی شامل زمان واکنش (0-240 دقیقه)، pH (4-9)، دوز کاتالیزور (015/0 005/0 گرم)، دما (60-10 درجه سانتی‌گراد)، نور مرئی و تابش نور UV، غلظت اولیه متری‌بوزین (25-10 میلی گرم بر لیتر)، اثر کاتالیزور در تاریکی، و میزان نقره موجود در نانوکامپوزیت‌های TiO2/Ag (7-10/0 درصد وزنی) بر روی حذف فتوکاتالیستی متریبوزین از محلول‌های آبی مصنوعی و واقعی مورد بررسی قرار گرفته‌است.

نتایج اصلی: بررسی‌های آزمایشگاهی نشان داد که نانوکامپوزیت TiO2/Ag حاوی 10 درصد وزنی نقره، زمان واکنش 120 دقیقه، pH برابر 6، جرم کاتالیست 013/0 گرم، و غلظت اولیه 10 میلی‌گرم بر لیتر متری‌بوزین بهترین ویژگی‌ها برای حداکثر‌کردن حذف متری‌بوزین در حضور نور UV است. نتایج به‌دست‌آمده نشان داد که عملکرد این نانوکامپوزیت در تخریب علف‌کش‌ها بهتر از نانوکاتالیست TiO2 تجاری است. علاوه بر این، روش پیشنهادی برای حذف متری‌بوزین تزریق شده به آب رودخانه‌های کارون و زهره و پساب کارخانه نیشکر در شرایط بهینه به کار گرفته شد و نتایج موفقیت آمیزی بدست آمد. همچنین نتایج حاصل از سه بار استفاده و احیای نانوکامپوزیت دی‌اکسید تیتانیوم/نقره، کارآمدی زیاد این فتوکاتالیست در حذف متری‌بوزین از نمونه‌های آبی را نشان داد. مقایسه روش‌های موجود در مقالات برای حذف متری‌بوزین با تحقیق حاضر نشان داد که روش پیشنهادی بهتر از این روش‌ها بوده و یا تفاوت چندانی با آنها ندارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Photocatalytic Removal of Metribuzin Using Titanium Dioxide/Silver Nanocomposite

نویسندگان English

Shahin Heydari Orojlou
Saadat Rastegarzadeh
Behrooz Zargar
Department of Chemistry, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده English

Research subject: In the present study, titanium dioxide/silver nanocomposites (TiO2/Ag) were synthesized by sol-gel method and their performance for photocatalytic removal of metribuzin was compared with commercial TiO2 catalysts P25 Degussa.

Research approach: The synthesized nanocomposites were evaluated using X-ray diffraction spectroscopy (XRD), field emission scanning electron microscopy (FESEM), and energy dispersive X-ray analysis (EDX). The effect of operating parameters including reaction time (0-240 minutes), pH (9-4), catalyst dose (0.005-0.015 g), temperature (10-60 ºC), visible light and UV light radiation, concentration Initial metribuzin (10-25 mg/L), the catalyst effect in the dark, and the amount of silver in TiO2/Ag nanocomposites (0.10-7% by weight) were investigated on the photocatalytic removal of metribuzin from artificial and real aqueous solutions.

Main results: Laboratory investigations showed that TiO2/Ag nanocomposite containing 10% by weight of silver, reaction time of 120 minutes, pH equal to 6, catalyst mass of 0.013 g, and initial concentration of 10 mg/L metribuzin are the best properties to maximize the removal of metribuzin in the presence of UV light. The obtained results showed that the synthesized TiO2/Ag nanocomposite has a higher potential in the degradation of herbicides compared to the commercial TiO2 nano-catalyst. In addition, the proposed method was used to remove metribuzin injected into the water of the Karun and Zohreh rivers and the wastewater of the sugarcane factory under optimal conditions, and successful results were obtained. Also, the results of using and regenerating the titanium dioxide/silver catalyst three times to remove metribuzin show the high efficiency of this photocatalyst in removing metribuzin from water samples. Comparing the methods available in the literature for the removal of metribuzin with the present method showed that the proposed method is better or comparable to the reported methods.

کلیدواژه‌ها English

Metribuzin
photocatalytic removal
titanium dioxide/silver nanocomposite
investigation of operating parameters
discontinuous system
[1] Wauchope, R.D., et al., Predicted Impact of Transgenic, Herbicide‐Tolerant Corn on Drinking Water Quality in Vulnerable Watersheds of the Mid‐Western USA. Pest management science, 2002. 58(2): p. 146-160.
[2] Kitous, O., et al., Metribuzin Removal with Electro-Activated Granular Carbon. Chemical Engineering and Processing: Process Intensification, 2012. 55: p. 20-23.
[3] Antonopoulou, M. and I. Konstantinou, Photocatalytic Treatment of Metribuzin Herbicide over TiO2 Aqueous Suspensions: Removal Efficiency, Identification of Transformation Products, Reaction Pathways and Ecotoxicity Evaluation. Journal of Photochemistry and Photobiology A: Chemistry, 2014. 294: p. 110-120.
[4] Arias-Estévez, M., et al., The Mobility and Degradation of Pesticides in Soils and the Pollution of Groundwater Resources. Agriculture, Ecosystems & Environment, 2008. 123(4): p. 247-260.
[5] Stamatis, N., et al., Spatiotemporal Variation and Risk Assessment of Pesticides in Water of the Lower Catchment Basin of Acheloos River, Western Greece. The Scientific World Journal, 2013. 2013.
[6] Pohanish, R.P., Sittig's Handbook of Pesticides and Agricultural Chemicals. 2014: William Andrew.
[7] Fernandez-Cornejo, J., et al., Conservation Tillage, Herbicide Use, and Genetically Engineered Crops in the United States: The Case of Soybeans. 2013.
[8] Roberts, T.R., et al., Metabolic Pathways of Agrochemicals: Insecticides and Fungicides. Vol. 1. 1998: Royal Society of Chemistry.
[9] Undabeytia, T., et al., Reduced Metribuzin Pollution with Phosphatidylcholine–Clay Formulations. Pest Management Science, 2011. 67(3): p. 271-278.
[10] Henriksen, T., B. Svensmark, and R.K. Juhler, Analysis of Metribuzin and Transformation Products in Soil by Pressurized Liquid Extraction and Liquid Chromatographic–Tandem Mass Spectrometry. Journal of chromatography A, 2002. 957(1): p. 79-87.
[11] Tutunaru, B., et al., Electrochemical Study of Metribuzin Pesticide Degradation on Bismuth Electrode in Aqueous Solution. Int. J. Electrochem. Sci, 2015. 10(1): p. 223-34.
[12] Berberidou, C., et al., Photocatalytic Degradation of the Herbicide Clopyralid: Kinetics, Degradation Pathways and Ecotoxicity Evaluation. Journal of Chemical Technology and Biotechnology, 2016. 91(9): p. 2510-2518.
[13] Nasehi, P., et al., Cadmium adsorption using novel MnFe2O4-TiO2-UIO-66 magnetic nanoparticles and condition optimization using a response surface methodology. RSC advances. 2019. 9: p. 20087-20099.
[14] Nasehi, P., et al., Cr (VI) adsorption using synthesis novel UIO-66-MnFe2O4-TiO2 magnetic nanoparticles by experimental design. Journal of Applied Research of Chemical-Polymer Engineering. 2021. 4: p. 33-48.
[15] Nasehi, P., et al., Synthesis of novel acid-promoted UIO-66-NH2-MnFe2O4-TiO2-TiNT nanocomposite for high synchronous adsorption of cadmium and methyl orange and conditions optimization by response surface methodology. Separation Science and Technology. 2021. 56: p. 884-902.
[16] Sarathy, S. and M. Mohseni, Effects of UV/H2O2 Advanced Oxidation on Chemical Characteristics and Chlorine Reactivity of Surface Water Natural Organic Matter. Water Research, 2010. 44(14): p. 4087-4096.
[17] Carneiro, R.T., et al., Removal of Glyphosate Herbicide from Water Using Biopolymer Membranes. Journal of Environmental Management, 2015. 151: p. 353-360.
[18] Mehta, R., et al., Removal of Substituted Phenyl Urea Pesticides by Reverse Osmosis Membranes: Laboratory Scale Study for Field Water Application. Desalination, 2015. 358: p. 69-75.
[19] Zhang, H., et al., Biodegradation of Triazine Herbicide Metribuzin by the Strain Bacillus sp. N1. Journal of Environmental Science and Health, Part B, 2014. 49(2): p. 79-86.
[20] Chen, G., Advances in Agricultural Machinery and Technologies. 2018.
[21] Raschke, U., et al., Photodecomposition of 4-Amino-1, 2, 4-Triazin-3, 5-Diones and-Thiones in Oxygenated Aqueous Solutions. Journal of Photochemistry and Photobiology A: Chemistry, 1998. 115(3): p. 191-197.
[22] Khan, A., et al., Titanium Dioxide-Mediated Photcatalysed Degradation of Two Herbicide Derivatives Chloridazon and Metribuzin in Aqueous Suspensions. International journal of chemical engineering, 2012. 2012.
[23] Vela, N., et al., Photocatalytic mitigation of triazinone herbicide residues using titanium dioxide in slurry photoreactor. Catalysis Today, 2015. 252: p. 70-77.
[24] Nasar, A., Kinetics of Metribuzin Degradation by Colloidal Manganese Dioxide in Absence and Presence of Surfactants. Chemical Papers, 2014. 68(1): p. 65-73.
[25] Sun, B., et al., Magnetic Fe2O3/Mesoporous Black TiO2 Hollow Sphere Heterojunctions With Wide-Spectrum Response and Magnetic Separation. Applied Catalysis B: Environmental, 2018. 221: p. 235-242.
[26] Yang, Y., et al., Electrochemical removal of metribuzin in aqueous solution by a novel PbO2/WO3 composite anode: characterization, influencing parameters and degradation pathways. Journal of the Taiwan Institute of Chemical Engineers. 2019. 102: p. 170-181.
[27] Elmi, F., et al., Kinetic and isotherm studies of adsorption of the metribuzin herbicide on an Fe3O4/CNT@ PDA hybrid magnetic nanocomposite in wastewater. Industrial and Engineering Chemistry Research. 2020. 59: p. 9604-9610.
[28] Kadam, S.R. , et al., Degradation kinetics and mechanism of hazardous metribuzin herbicide using advanced oxidation processes (HC & HC+ H2O2). Chemical Engineering and Processing-Process Intensification. 2021. 166: p. 108486.
[29] Angin, D., and Ilci, A. Investigation of the adsorption capacity of olive-waste cake activated carbon for removal of metribuzin from aqueous solutions. International Journal of Environmental Science and Technology. 2022. 19: p. 3607-3624.
[30] Imteaz, M. , et al., Modelling Metribuzin Removal Efficiency Through Adsorption Using Activated Carbon of Olive-waste Cake. Water, Air, and Soil Pollution. 2022. 233: p. 1-11.
[31] Leong, K.H., et al., Solar Photocatalytic Activity of Anatase TiO2 Nanocrystals Synthesized by Non-Hydrolitic Sol–Gel Method. Solar Energy, 2014. 101: p. 321-332.
[32] Alammar, T. and A.-V. Mudring, Facile Preparation of Ag/ZnO Nanoparticles via Photoreduction. Journal of materials science, 2009. 44(12): p. 3218-3222.
[33] Honório, M.O., et al., Removal of Metribuzin by Ozonation: Effect of Initial Concentration and pH. Journal of Environmental Protection, 2013. 4(06): p. 564.
[34] Mahmoodi, N.M., et al., Photocatalytic degradation of agricultural N-heterocyclic organic pollutants using immobilized nanoparticles of titania. Journal of Hazardous Materials, 2007. 145(1-2): p. 65-71.
[35] do Nascimento, R.F., et al., Relevant Aspects in the Determination of Pesticides in Foods. 2016