بررسی روش های مختلف افزایش عملکرد غشاها در فرایند جداسازی اکسیژن از نیتروژن

نوع مقاله : مروری تحلیلی

نویسندگان

1 گروه تحقیقاتی علوم و فناوری غشایی، دانشکده مهندسی شیمی، دانشگاه تربیت مدرس تهران، ایران

2 پژوهشگاه علوم و فنون هسته‌ای، پژوهشکده چرخه سوخت هسته‌ای، تهران، ایران

3 دانشکده فنی و مهندسی، دانشگاه صنعتی خاتم الانبیاء بهبهان، ایران

چکیده
در سال­های اخیر جداسازی هوا با استفاده از غشا به‌عنوان یک فناوری مقرون‌به‌صرفه برای تولید جریان­های نسبتاً خالص نیتروژن و اکسیژن مورد توجه زیادی قرار گرفته است. نتایج مطالعات نشان می­دهد که طراحی و ساخت پلیمرهای جدید با ساختار مطلوب برای صنعتی شدن فناوری غشاهای پلیمری در زمینه جداسازی اکسیژن از نیتروژن امری بسیار مهم تلقی می­شود. نتایج بدست آمده از کارهای تحقیقاتی مختلف نشان می­دهند که غشاهای پلیمری ساخته شده بر پایه پلی­ایمیدهای آروماتیک و پلیمرهای ذاتاً میکرومتخلخل (PIMs) به­علت گزینش­پذیری بالا، خواص مکانیکی، حرارتی و شیمیایی مناسب و نیز بهره­مندی از ساختارهای متفاوت ناشی از استخلاف­های پلیمری گزینه مناسبی جهت جداسازی اکسیژن و نیتروژن می­باشند. از سوی دیگر، فرایند اصلاح غشا نیز می­تواند مقاومت مکانیکی، شیمیایی و گزینش­پذیری غشاها را تا حد زیادی افزایش داده و روشی مؤثر در جهت بهبود عملکرد جداسازی اکسیژن از نیتروژن ­باشد. نتایج بدست آمده حاکی از این است که ساخت غشاهای آمیزه پلیمری گزینش­پذیری و تراوایی غشاها را افزایش داده، همچنین ایجاد اتصالات عرضی نیز در اغلب موارد موجب افزایش گزینش­پذیری غشاها شده است. در این میان غشاهای غربال مولکولی کربنی که توسط تجزیه حرارتی ماده اولیه پلیمری در شرایط کنترل شده دمایی و فشاری ساخته می­شوند، به­دلیل داشتن خواصی نظیر گزینش­پذیری و تراوایی بالا، پایداری در محیط­های خورنده و قابلیت کاربرد در دماهای بالا مورد گزینه مناسبی برای جداسازی اکسیژن و نیتروژن محسوب می­شوند. همچنین با دقت در نتایج بدست آمده از کارهای تحقیقاتی مختلف می­توان دریافت که استفاده از نیروی محرکه و ذرات مغناطیسی در پلیمر بهبود همزمان تراوایی و گزینش­پذیری غشاها را در پی دارد. بطوریکه پیش­بینی می­شود این روش در بهبود عملکرد غشاهای پلیمری در زمینه جداسازی اکسیژن و نیتروژن یکی از روش­های کارآمد باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigation of different methods of increasing membrane performance for oxygen/nitrogen separation

نویسندگان English

Saba Raveshiyan 1
javad karimi-Sabet 2
Parya Amirabedi 3
1 Membrane Science and Technology Research Group, Department of Chemistry Engineering, Tarbiat Modares University, Tehran, Iran
2 Material and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
3 Faculty of Engineering, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
چکیده English

In recent years, air separation using membranes has received much attention as a cost-effective technology for producing relatively pure streams of nitrogen and oxygen. The results of studies show that the design and fabrication of new polymers with the desired structure for the industrialization of polymer membrane technology in the field of oxygen separation from nitrogen is considered very important. The results obtained from various research works show that polymer membranes made on the basis of aromatic polyimides and PIMs due to high selectivity, suitable mechanical, thermal and chemical properties and also benefiting from different structures due to polymer substitutions are a suitable option for separation of oxygen and nitrogen. Moreover, the membrane modification process can greatly increase the mechanical, chemical and selectivity of the membranes and be an effective way to improve the separation of oxygen from nitrogen. The results indicate that the fabrication of blended membranes has increased the selectivity and permeability of the membranes, and the creation of transverse connections in most cases has increased the selectivity of the membranes. Meanwhile, carbon molecular sieve membranes that are made by thermal decomposition of the polymeric raw material under controlled temperature and pressure conditions due to their properties such as high selectivity and permeability, stability in corrosive environments and applicability at high temperatures are suitable options for separation of oxygen and nitrogen. Also, carefully in the results obtained from various research works, it can be seen that the use of driving force and magnetic particles in the polymer simultaneously improves the permeability and selectivity of membranes. As it is predicted, this method is one of the efficient methods in improving the performance of polymer membranes in the field of oxygen and nitrogen separation.

کلیدواژه‌ها English

Air separation
Membrane technology
Polymeric membranes
Oxygen
Nitrogen
1. Castro-Domínguez B., et al., Perfluorocarbon-based supported liquid membranes for O 2/N 2 separation. Separation and Purification Technology, 116,19-24,2013.
2. Vinson, D.R., Air separation control technology, Computers & Chemical Engineering, 30(10), 1436-1446, 2006.
3. Campo, M., F. Magalhães, and A. Mendes, Separation of nitrogen from air by carbon molecular sieve membranes. Journal of Membrane Science, 350(1), 139-147, 2010.
4. Murali, R.S., T. Sankarshana, and S. Sridhar, Air Separation by Polymer-based Membrane Technology. Separation & Purification Reviews, 42(2), 130-186, 2013.
5. Kansha, Y., et al., A novel cryogenic air separation process based on self-heat recuperation. Separation and Purification Technology, 77(3),389-396, 2011.
6. Rodrigues, M.A., et al., Nanostructured membranes containing UiO-66 (Zr) and MIL-101 (Cr) for O2/N2 and CO2/N2 separation. Separation and Purification Technology, 192,491-500, 2018.
7. Aneke, M. and M. Wang, Potential for improving the energy efficiency of cryogenic air separation unit (ASU) using binary heat recovery cycles. Applied Thermal Engineering, 81, 223-231, 2015.
8. Shafie K., and Saeid Hosseini., Study and Investigation on the Performance of Membranes Developed Based on Polysulfone for Air Separation Process, 10, 126-148, 2016.
9. عمرانی, ا.س., et al., A Decision Tree for Technology Selection of Nitrogen Production Plants. Journal of Chemical and Petroleum Engineering, 45(1), 1-11, 2011.
10. Belaissaoui, B., et al., Energy efficiency of oxygen enriched air production technologies: Cryogeny vs membranes. Separation and Purification Technology, 125, 142-150, 2014.
11. Cornelissen, R. and G. Hirs, Exergy analysis of cryogenic air separation. Energy Conversion and Management, 39(16-18), 1821-1826, 1998.
12. Fu, Q., et al., A cryogenic air separation process based on self-heat recuperation for oxy-combustion plants. Applied energy, 162,1114-1121, 2016.
13. Chong, K., et al., Recent progress of oxygen/nitrogen separation using membrane technology. Journal of Engineering Science and Technology, 11(7), 1016-1030, 2016.
14. Tul Muntha, S., A. Kausar, and M. Siddiq, Progress in applications of polymer-based membranes in gas separation technology. Polymer-Plastics Technology and Engineering, 55(12), 1282-1298, 2016.
15. Kianfar, E. and V. Cao, Polymeric membranes on base of PolyMethyl methacrylate for air separation: a review. journal of materials research and technology, 10, 1437-1461, 2021.
16. Himma, N.F., et al., Recent progress and challenges in membrane-based O2/N2 separation. Reviews in Chemical Engineering, 35(5), 591-625, 2019.
17. Bozorg, M., et al., Polymeric membrane materials for nitrogen production from air: A process synthesis study. Chemical Engineering Science, 207, 1196-1213, 2019.
18. Matteucci, S., et al., Gas permeability, solubility and diffusivity in 1, 2-polybutadiene containing brookite nanoparticles. Polymer, 49(3), 757-773, 2008.
19. Ghosal, K. and B.D. Freeman, Gas separation using polymer membranes: an overview. Polymers for advanced technologies, 5(11), 673-697, 1994.
20. Chen, S.-J. and B.-Y. Yu, Rigorous simulation and techno-economic evaluation on the hybrid membrane/cryogenic distillation processes for air separation. Journal of the Taiwan Institute of Chemical Engineers, 127, 56-68, 2021.
21. Perry, J.D., K. Nagai, and W.J. Koros, Polymer membranes for hydrogen separations. MRS bulletin, 31(10), 745-749, 2006.
22. Karbasi, E., et al., Experimental and numerical study of air-gap membrane distillation (AGMD): novel AGMD module for Oxygen-18 stable isotope enrichment. Chemical Engineering Journal, 322, 667-678, 2017.
23. Hosseini, S.S., et al., Simulation and sensitivity analysis of transport in asymmetric hollow fiber membrane permeators for air separation. RSC Advances, 5(105), 86359-86370, 2015.
24. Hosseini, S.S., J.A. Dehkordi, and P.K. Kundu, Gas permeation and separation in asymmetric hollow fiber membrane permeators: Mathematical modeling, sensitivity analysis and optimization. Korean Journal of Chemical Engineering, 33(11), 3085-3101, 2016.
25. Castarlenas, S., C. Téllez, and J. Coronas, Gas separation with mixed matrix membranes obtained from MOF UiO-66-graphite oxide hybrids. Journal of Membrane Science, 526, 205-211, 2017.
26. Merkel, T.C., et al., Effect of nanoparticles on gas sorption and transport in poly (1-trimethylsilyl-1-propyne). Macromolecules, 36(18), 6844-6855, 2003.
27. Karim, S.S., et al., A comprehensive overview of dual-layer composite membrane for air (O2/N2) separation. Polymers and Polymer Composites, 29, S1630-S1640, 2021.
28. Baker, R.W. and B.T. Low, Gas separation membrane materials: a perspective. Macromolecules, 47(20), 6999-7013, 2014.
29. Freeman, B., Y. Yampolskii, and I. Pinnau, Materials science of membranes for gas and vapor separation. John Wiley & Sons, 2006.
30. Stern, S.A., Polymers for gas separations: the next decade. Journal of Membrane Science, 94(1), 1994.
31. Wang, Z., D. Wang, and J. Jin, Microporous polyimides with rationally designed chain structure achieving high performance for gas separation. Macromolecules, 47(21), 7477-7483, 2014.
32. Robeson, L.M., et al., Comparison of transport properties of rubbery and glassy polymers and the relevance to the upper bound relationship. Journal of Membrane Science, 476, 421-431, 2015.
33. Koros, W., et al., Polymeric membrane materials for solution-diffusion based permeation separations. Progress in Polymer Science, 13(4), 339-401, 1988.
34. Ismail, A.F., N. Ridzuan, and S.A. Rahman, Latest development on the membrane formation for gas separation. Songklanakarin J. Sci. Technol, 24,1025-1043, 2002.
35. Yong, W., et al., Molecular engineering of PIM-1/Matrimid blend membranes for gas separation. Journal of membrane science, 407, 47-57, 201.
36. Luo, S., et al., Pentiptycene-based polyimides with hierarchically controlled molecular cavity architecture for efficient membrane gas separation. Journal of Membrane Science, 480, 20-30, 2015.
37. Mulder, J., Basic principles of membrane technology. Springer Science & Business Media, 2012.
38. Weidman, J.R. and R. Guo, The Use of Iptycenes in Rational Macromolecular Design for Gas Separation Membrane Applications. Industrial & Engineering Chemistry Research, 56(15), 4220-4236, 2017.
39. Zhang, C., P. Li, and B. Cao, Effects of the side groups of the spirobichroman-based diamines on the chain packing and gas separation properties of the polyimides. Journal of Membrane Science, 530, 176-184, 2017.
40. Koros, W. and G. Fleming, Membrane-based gas separation. Journal of Membrane Science, 83(1), 1-80, 1993.
41. Ismail, A.F., K.C. Khulbe, and T. Matsuura, Gas Separation Membrane Materials and Structures, in Gas Separation Membranes. Springer, 37-192, 2015.
42. Muruganandam, N. and D. Paul, Evaluation of substituted polycarbonates and a blend with polystyrene as gas separation membranes. Journal of membrane science, 34(2), 185-198, 1987.
43. Aitken, C., W. Koros, and D. Paul, Effect of structural symmetry on gas transport properties of polysulfones. Macromolecules, 25(13), 3424-3434, 1992.
44. Kim, K.-J., et al., CO2 separation performances of composite membranes of 6FDA-based polyimides with a polar group. Journal of membrane science, 211(1), 41-49, 2003.
45. Najari, S., et al., Phenomenological modeling and analysis of gas transport in polyimide membranes for propylene/propane separation. RSC Advances, 5(58), 47199-47215, 2015.
46. Tanaka, K., et al., Permeability and permselectivity of gases in fluorinated and non-fluorinated polyimides. Polymer, 33(3), 585-592, 1992.
47. Kumazawa, H., et al., Permeation of carbon dioxide in glassy poly(ether imide) and poly(ether ether ketone) membranes. Journal of Membrane Science, 93(1), 53-59, 1994.
48. Jansen, J., M. Macchione, and E. Drioli, High flux asymmetric gas separation membranes of modified poly (ether ether ketone) prepared by the dry phase inversion technique. Journal of membrane science, 255(1), 167-180, 2005.
49. Shen, Y. and A.C. Lua, Preparation and characterization of mixed matrix membranes based on PVDF and three inorganic fillers (fumed nonporous silica, zeolite 4A and mesoporous MCM-41) for gas separation. Chemical Engineering Journal, 192, 201-210, 2012.
50. Hamad, F. and T. Matsuura, Performance of gas separation membranes made from sulfonated brominated high molecular weight poly (2, 4-dimethyl-l, 6-phenyIene oxide). Journal of membrane science, 253(1), 183-189, 2005.
51. Khulbe, K., et al., The morphology characterisation and performance of dense PPO membranes for gas separation. Journal of membrane science, 135(2), 211-223, 1997.
52. Kumbharkar, S.C., P.B. Karadkar, and U.K. Kharul, Enhancement of gas permeation properties of polybenzimidazoles by systematic structure architecture. Journal of membrane science, 286(1), 161-169, 2006.
53. Pérez-Francisco, J.M., et al., CMS membranes from PBI/PI blends: Temperature effect on gas transport and separation performance. Journal of Membrane Science, 597, 117703, 2020.
54. Hosseini, S.S., N. Peng, and T.S. Chung, Gas separation membranes developed through integration of polymer blending and dual-layer hollow fiber spinning process for hydrogen and natural gas enrichments. Journal of Membrane Science, 349(1), 156-166, 2010.
55. Han, J.Y., et al., Synthesis and characterization of fluorene-based polybenzimidazole copolymer for gas separation. Journal of Applied Polymer Science, 131(15), 2014.
56. Woo, M., J. Choi, and M. Tsapatsis, Poly (1-trimethylsilyl-1-propyne)/MFI composite membranes for butane separations. Microporous and Mesoporous Materials, 110(2): p. 330-338, 2008.
57. Consolati, G., et al., Chlorinated PTMSP membranes: permeability, free volume and physical properties. Polymer, 42(3), 1265-1269, 2001.
58. Peter, J. and K.-V. Peinemann, Multilayer composite membranes for gas separation based on crosslinked PTMSP gutter layer and partially crosslinked Matrimid® 5218 selective layer. Journal of Membrane Science, 340(1), 62-72, 2009.
59. Swaidan, R., et al., Rational design of intrinsically ultramicroporous polyimides containing bridgehead-substituted triptycene for highly selective and permeable gas separation membranes. Macromolecules, 47(15), 5104-5114, 2014.
60. Wu, X., et al., Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation. Journal of Membrane Science, 528, 273-283, 2017.
61. Ahn, J., et al., Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1). Journal of Membrance Science, 346(2), 280-287, 2010.
62. Jue, M.L. and R.P. Lively, Targeted gas separations through polymer membrane functionalization. Reactive and Functional Polymers, 86, 88-110, 2015.
63. Carta, M., et al., Triptycene induced enhancement of membrane gas selectivity for microporous Tröger's base polymers. Advanced Materials, 26(21), 3526-3531, 2014.
64. Ma, C. and J.J. Urban, Polymers of intrinsic microporosity (PIMs) gas separation membranes: A mini review. Proc. Nat. Res. Soc, 2(1),2002, 2018.
65. Chung, T.-S., et al., Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Progress in Polymer Science, 32(4), 483-507, 2007.
66. Perez, E.V., et al., Mixed-matrix membranes containing MOF-5 for gas separations. Journal of Membrane Science, 328(1), 165-173, 2009.
67. Jusoh, N., et al., Enhanced gas separation performance using mixed matrix membranes containing zeolite T and 6FDA-durene polyimide. Journal of Membrane Science, 525, 175-186, 2017.
68. Nasir, R., et al., Material Advancements in Fabrication of Mixed‐Matrix Membranes. Chemical Engineering & Technology, 36(5), 717-727, 2013.
69. Ahn, J., et al., Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. Journal of Membrance Science, 314(1), 123-133, 2008.
70. Semsarzadeh, M.A. and B. Ghalei, Preparation, characterization and gas permeation properties of polyurethane–silica/polyvinyl alcohol mixed matrix membranes. Journal of Membrane Science, 432, 115-125, 2013.
71. Li, Y., et al., The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes. Journal of Membrane Science, 260(1), 45-55, 2005.
72. Ahmad, J. and M.-B. Hägg, Development of matrimid/zeolite 4A mixed matrix membranes using low boiling point solvent. Separation and Purification Technology, 115, 190-197, 2013.
73. Kiadehi, A.D., et al., Novel carbon nano-fibers (CNF)/polysulfone (PSf) mixed matrix membranes for gas separation. Journal of Industrial and Engineering Chemistry, 22, 199-207, 2015.
74. Moghadam, F., et al., The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes. Separation and Purification Technology, 77(1), 128-136, 2011.
75. Kiadehi, A.D., et al., Fabrication and Evaluation of Functionalized Nano-titanium Dioxide (F-NanoTiO2)/polysulfone (PSf) Nanocomposite Membranes for Gas Separation. Iranian Journal of Chemical Engineering, 11(4), 41, 2014.
76. Bushell, A.F., et al., Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8. Journal of Membrance Science, 427, 48-62, 2013.
77. Hosseini, S.S., et al., Enhanced gas separation performance of nanocomposite membranes using MgO nanoparticles. Journal of Membrance Science, 302(1), 207-217, 2007.
78. Xiao, Y., et al., The strategies of molecular architecture and modification of polyimide-based membranes for CO 2 removal from natural gas—A review. Progress in Polymer Science, 34(6), 561-580, 2009.
79. Aziz, F. and A. Ismail, Preparation and characterization of cross-linked Matrimid® membranes using para-phenylenediamine for O2/N2 separation. Separation and Purification Technology, 73(3), 421-428, 2010.
80. Dudley, C., et al., Influence of crosslinking technique on the physical and transport properties of ethynyl-terminated monomer/polyetherimide asymmetric membranes. Journal of Membrane Science, 191(1), 1-11, 2001.
81. Weng, T.H., H.H. Tseng, and M.Y. Wey, Effects of crosslinking modification on the O2/N2 separation characteristics of poly (phenyl sulfone)/poly (bisphenol A‐co‐4‐nitrophthalic anhydride‐co‐1, 3‐phenylenediamine) blend membranes. Journal of Applied Polymer Science, 116(3), 1254-1263, 2010.
82. سلیمانی، ع.، ، حسینی ، س.س.، مروری بر روند توسعه و بهبود عملکرد غشاهای پلیمری بمنظور جداسازی و استحصال هلیم. نشریه شیمی و مهندسی شیمی ایران،36، 32-1، 2017.
83. Himma, N.F. and I.G. Wenten. Surface engineering of polymer membrane for air separation. in AIP Conference Proceedings. AIP Publishing LLC, 2017.
84. Nakata, M. and H. Kumazawa, Gas permeability and permselectivity of plasma‐treated polyethylene membranes. Journal of applied polymer science, 101(1), 383-387, 2006.
85. Chen, S.-H., et al., Oxygen/nitrogen separation by plasma chlorinated polybutadiene/polycarbonate composite membrane. Journal of membrane science, 124(2), 273-281, 1997.
86. Liu, F., et al., Progress in the production and modification of PVDF membranes. Journal of membrane science, 375(1-2), 1-27, 2011.
87. Rahimpour, A., et al., Preparation and characterization of modified nano-porous PVDF membrane with high antifouling property using UV photo-grafting. Applied Surface Science, 255(16), 7455-7461, 2009.
88. Fu, Y.-J., et al., Effect of UV-Ozone Treatment on Poly(dimethylsiloxane) Membranes: Surface Characterization and Gas Separation Performance. Langmuir, 26(6), 4392-4399, 2010.
89. Kharitonov, A., Practical applications of the direct fluorination of polymers. Journal of Fluorine Chemistry, 103(2), 123-127, 2000.
90. Kharitonov, A., et al., Direct fluorination—Useful tool to enhance commercial properties of polymer articles. Journal of Fluorine chemistry, 126(2), 251-263, 2005.
91. Kharitonov, A., Direct fluorination of polymers—from fundamental research to industrial applications. Progress in Organic Coatings, 61(2), 192-204, 2008.
92. Mannan, H.A., et al., Recent applications of polymer blends in gas separation membranes. Chemical Engineering & Technology, 36(11),1838-1846, 2013.
93. Li, X.-G., et al., Morphology and gas permselectivity of blend membranes of polyvinylpyridine with ethylcellulose. Polymer, 42(16), 6859-6869, 2001.
94. Yong, W.F., et al., Molecular interaction, gas transport properties and plasticization behavior of cPIM-1/Torlon blend membranes. Journal of Membrane Science, 462, 119-130, 2014.
95. Yong, W.F. and T.-S. Chung, Miscible blends of carboxylated polymers of intrinsic microporosity (cPIM-1) and Matrimid. Polymer, 59, 290-297, 2015.
96. Hosseini, S.S., et al., Enhancing the properties and gas separation performance of PBI–polyimides blend carbon molecular sieve membranes via optimization of the pyrolysis process. Separation and Purification Technology, 122, 278-289, 2014.
97. Fu, S., et al., Temperature dependence of gas transport and sorption in carbon molecular sieve membranes derived from four 6FDA based polyimides: Entropic selectivity evaluation. Carbon, 95, 995-1006, 2015.
98. Soleimany, A., S.S. Hosseini, and F. Gallucci, Recent progress in developments of membrane materials and modification techniques for high performance helium separation and recovery: A review. Chemical Engineering and Processing: Process Intensification, 2017.
99. Fu, S., et al., Carbon molecular sieve membrane structure–property relationships for four novel 6FDA based polyimide precursors. Journal of Membrane Science, 487, 60-73, 2015.
100. Hosseini, S.S. and T.S. Chung, Carbon membranes from blends of PBI and polyimides for N2/CH4 and CO2/CH4 separation and hydrogen purification. Journal of Membrane Science, 328(1), 174-185, 2009.
101. Suda, H. and K. Haraya, Molecular sieving effect of carbonized Kapton polyimide membrane. Journal of the Chemical Society, Chemical Communications, (11), 1179-1180, 199.
102. Toshima, N. and S. Hara, Gas Separation by Metal Complexes: Membrane Separations. Encyclopedia of Separation Science, 2000.
103. Ferraz, H., et al., Recent achievements in facilitated transport membranes for separation processes. Brazilian Journal of Chemical Engineering, 24(1), 101-118, 2007.
104. Nagar, H., et al., Air separation by facilitated transport of oxygen through a Pebax membrane incorporated with a cobalt complex. RSC Advances, 5(93), 76190-76201, 2015.
105. Pallapa, M. and J. Yeow, A review of the hybrid techniques for the fabrication of hard magnetic microactuators based on bonded magnetic powders. Smart Materials and Structures, 24(2), 025007, 2014.
106. Raveshiyan, S., J. Karimi-Sabet, and S.S. Hosseini, Influence of Particle Size on the Performance of Polysulfone Magnetic Membranes for O2/N2 Separation. Chemical Engineering & Technology, 43(12), 2437-2446, 2020.
107. Raveshiyan, S., S.S. Hosseini, and J. Karimi-Sabet, Intensification of O2/N2 separation by novel magnetically aligned carbonyl iron powders/polysulfone magnetic mixed matrix membranes. Chemical Engineering and Processing-Process Intensification, 150, 107866, 2020.
108. Raveshiyan, S., J. Karimi-Sabet, and S.S. Hosseini, Investigation the performance of Polysulfone/Neodymium Magnetic Mixed-Matrix Membranes for O2/N2 Separation. Journal of Applied Research of Chemical-Polymer Engineering, 4(2), 53-68, 2020.
109. Rybak, A. and W. Kaszuwara, Magnetic properties of the magnetic hybrid membranes based on various polymer matrices and inorganic fillers. Journal of Alloys and Compounds, 648, 205-214, 2015.
110. Krasowska, M., et al., Structure morphology problems in the air separation by polymer membranes with magnetic particles. Journal of Membrane Science, 415, 864-870, 2012.
111. Rybak, A., et al., Magnetic Mixed Matrix Membranes Consisting of PPO Matrix and Magnetic Filler in Gas Separation. Separation Science and Technology, 49(11), 1729-1735, 2014.
112. Rybak, A., Z.J. Grzywna, and W. Kaszuwara, On the air enrichment by polymer magnetic membranes. Journal of Membrane Science, 336(1), 79-85, 2009.
113. Rybak, A., Z.J. Grzywna, and P. Sysel, Mixed matrix membranes composed of various polymer matrices and magnetic powder for air separation. Separation and Purification Technology, 118, 424-431, 2013.
114. Rybak, A., et al., " Smoluchowski type" Equations for Modelling of Air Separation by Membranes with Various Structure. Acta Physica Polonica B, 40(5), 1447, 2009.
115. Krasowska, M., et al., Structure and transport properties of ethylcellulose membranes with different types and granulation of magnetic powder. Physica A: Statistical Mechanics and its Applications, 452, 241-250, 2016.
116. Rybak, A., et al., The magnetic inorganic-organic hybrid membranes based on polyimide matrices for gas separation. Composites Part B: Engineering, 110, 161-170, 2017.
117. Rybak, A., et al., The studies on novel magnetic polyimide inorganic-organic hybrid membranes for air separation. Materials Letters, 208, 14-18, 2017.
118. Madaeni, S., E. Enayati, and V. Vatanpour, Separation of nitrogen and oxygen gases by polymeric membrane embedded with magnetic nano‐particle. Polymers for Advanced Technologies, 22(12), 2556-2563, 2011.
119. Rybak, A., et al., Poly (2, 6-dimethyl-1, 4-phenylene oxide) hybrid membranes filled with magnetically aligned iron-encapsulated carbon nanotubes (Fe@ MWCNTs) for enhanced air separation. Diamond and Related Materials, 83, 21-29, 2018.