[1] Han W, Nie H, Long X, Li M, Yang Q, Li D. Effects of the support Brønsted acidity on the hydrodesulfurization and hydrodenitrogention activity of sulfided NiMo/Al2O3 catalysts. Catal Today 292:58–66; 2017.
[2] Zhou W, Wei Q, Zhou Y, Liu M, Ding S, Yang Q. Hydrodesulfurization of 4, 6-dimethyldibenzothiophene over NiMo sulfide catalysts supported on meso-microporous Y zeolite with different mesopore sizes. Appl Catal B Environ;238:212–24; 2018.
[3] Qin Z, Shen W, Zhou S, Shen Y, Li C, Zeng P, et al. Defect-assisted mesopore formation during Y zeolite dealumination: The types of defect matter. Microporous Mesoporous Mater;303:110248; 2020.
[4] Zhou W, Liu M, Zhou Y, Wei Q, Zhang Q, Ding S, et al. 4, 6-Dimethyldibenzothiophene hydrodesulfurization on nickel-modified USY-supported NiMoS catalysts: effects of modification method. Energy & Fuels;31:7445–55; 2017.
[5] Verboekend D, Nuttens N, Locus R, Van Aelst J, Verolme P, Groen JC, et al. Synthesis, characterisation, and catalytic evaluation of hierarchical faujasite zeolites: milestones, challenges, and future directions. Chem Soc Rev;45:3331–52; 2016.
[6] Verboekend D, Vilé G, Pérez-ramírez J. Hierarchical Y and USY Zeolites Designed by Post- Synthetic Strategies:916–28; 2012.
[7] Shirvani S, Ghashghaee M, Kegnæs S. Dual role of ferric chloride in modification of USY catalyst for enhanced olefin production from refinery fuel oil. Appl Catal A Gen;580:131–9; 2019.
[8] Stanislaus A, Marafi A, Rana MS. Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catal Today;153:1–68; 2010.
[9] Li H, Wu H, Shi J. Competition balance between mesoporous self-assembly and crystallization of zeolite: a key to the formation of mesoporous zeolite. J Alloys Compd;556:71–8; 2013.
[10] Fu X, Sheng X, Zhou Y, Fu Z, Zhao S, Bu X, et al. Design of micro–mesoporous zeolite catalysts for alkylation. RSC Adv;6:50630–9; 2016.
[11] Li K, Valla J, Garcia-Martinez J. Realizing the commercial potential of hierarchical zeolites: new opportunities in catalytic cracking. ChemCatChem;6:46–66; 2014.
[12] Pérez-Ramírez J, Christensen CH, Egeblad K, Christensen CH, Groen JC. Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem Soc Rev;37:2530–42; 2008.
[13] Fu W, Zhang L, Tang T, Ke Q, Wang S, Hu J, et al. Extraordinarily high activity in the hydrodesulfurization of 4, 6-dimethyldibenzothiophene over Pd supported on mesoporous zeolite Y. J Am Chem Soc;133:15346–9; 2011.
[14] Tang T, Zhang L, Dong H, Fang Z, Fu W, Yu Q, et al. Organic template-free synthesis of zeolite Y nanoparticle assemblies and their application in the catalysis of the Ritter reaction. RSC Adv;7:7711–7; 2017.
[15] Zhang Z, Wang Q, Chen H, Zhang X. Hydroconversion of waste cooking oil into green biofuel over hierarchical USY-supported NiMo catalyst: a comparative study of desilication and dealumination. Catalysts;7:281; 2017.
[16] Gackowski M, Tarach K. Kuterasiński Ł., Podobiński J., Jarczewski S., Kuśtrowski P., Datka J. Hierarchical zeolites Y obtained by desilication: Porosity, acidity and catalytic properties. Microporous Mesoporous Mater;263:282–8; 2018.
[17] Feng A, Yu Y, Mi L, Cao Y, Yu Y, Song L. Synthesis and characterization of hierarchical Y zeolites using NH4HF2 as dealumination agent. Microporous Mesoporous Mater;280:211–8; 2019.
[18] Qin Z, Shen B, Yu Z, Deng F, Zhao L, Zhou S, et al. A defect-based strategy for the preparation of mesoporous zeolite Y for high-performance catalytic cracking. J Catal;298:102–11; 2013.
[19] Silaghi M-C, Chizallet C, Sauer J, Raybaud P. Dealumination mechanisms of zeolites and extra-framework aluminum confinement. J Catal;339:242–55; 2016.
[20] Guefrachi Y, Sharma G, Xu D, Kumar G, Vinter KP, Abdelrahman OA, et al. Steam‐Induced Coarsening of Single‐Unit‐Cell MFI Zeolite Nanosheets and Its Effect on External Surface Brønsted Acid Catalysis. Angew Chemie Int Ed;59:9579–85; 2020.
[21] Ren S, Meng B, Sui X, Duan H, Gao X, Zhang H, et al. Preparation of Mesoporous Zeolite Y by Fluorine–Alkaline Treatment for Hydrocracking Reaction of Naphthalene. Ind Eng Chem Res;58:7886–91; 2019.
[22] Asadi AA, Alavi SM, Royaee SJ, Bazmi M. Dependency of acidic and surficial characteristics of steamed Y zeolite on potentially effective synthesis parameters: screening, prioritizing and model development. Microporous Mesoporous Mater;259:142–54; 2018.
[23] Baerlocher C, McCusker LB, Olson DH. Atlas of zeolite framework types. Elsevier; 2007.
[24] Chester AW, Derouane EG. Zeolite characterization and catalysis. vol. 360. Springer; 2009.
[25] Asadi AA, Royaee SJ, Alavi SM, Bazmi M. Ultra-deep hydrodesulfurization of cracked and atmospheric gasoil blend: Direct and interactive impacts of support composition, chelating agent, metal and promoter loadings. Fuel Process Technol 2019;187:36–51.
[26] Lutz W, Rüscher CH, Heidemann D. Determination of the framework and non-framework [SiO2] and [AlO2] species of steamed and leached faujasite type zeolites: calibration of IR, NMR, and XRD data by chemical methods. Microporous Mesoporous Mater;55:193–202; 2002.
[27] Deng C, Zhang J, Dong L, Huang M, Li B, Jin G, et al. The effect of positioning cations on acidity and stability of the framework structure of Y zeolite. Sci Rep;6:1–13; 2016.
[28] Zhang D, Jin C, Zou M, Huang S. Mesopore Engineering for Well‐Defined Mesoporosity in Al‐Rich Aluminosilicate Zeolites. Chem Eur J;25:2675–83; 2019.
[29] van Haandel L, Bremmer M, Kooyman PJ, Van Veen JAR, Weber T, Hensen EJM. Structure–Activity Correlations in Hydrodesulfurization Reactions over Ni-Promoted Mo x W (1–x) S2/Al2O3 Catalysts. ACS Catal;5:7276–87; 2015.
[30] Chen W, Maugé F, van Gestel J, Nie H, Li D, Long X. Effect of modification of the alumina acidity on the properties of supported Mo and CoMo sulfide catalysts. J Catal;304:47–62; 2013.