Two-Step Synthesis of PolyCarboxylate Ether by Bulk and Solution Methods

Document Type : Original Research

Authors

1 Polymer & Chemical Engineering Department, Faculty of Engineering, Yazd University

2 Yazd University

Abstract
Abstract:

Research Subject: Superplasticizers can be synthesized in different ways. The aim of this study is to present a two-step method for the synthesis of polycarboxylate ether and to investigate the temperature change in synthesis. In the first stage synthesis, the main chain and in the second stage synthesis, the side chains are created.

Research Approach: The synthesis of the primary copolymer was done by mass method and free radical mechanism. FTIR analysis was performed to identify the functional groups formed according to the predictions and to reach the desired copolymer. Then the copolymer viscosity was determined as a parameter determining the progression of the main chain length and in the second step, polycarboxylate ether was synthesized by solution using an optimized AA copolymer. First, FTIR analysis was performed to confirm the structure and HNMR test was performed to confirm the final synthesis. Then, GPC test was performed to determine the characteristics of the synthesized ether polycarboxylate, including the average molecular weight of the polymer and the molecular weight distribution curve, and MW and PDI values ​​were reported. Finally, the slump test was performed to confirm the performance.

Main Results: With increasing the temperature of copolymer synthesis, the length of the main chain also increases and the intensity of this increase is higher at high temperatures, but on the other hand, temperatures higher than 70 ° C also caused the destruction of the copolymer, which was detectable in the form of viscosity reduction and discoloration of the solution. Therefore, the initial synthesis should be performed at 70 ° C for 8 hours. The synthesis of polycarboxylate ether with equal molar ratios and maintaining the same conditions and only at different temperatures showed that the best synthesis temperature is 70 ° C for 6 hours. By increasing the molecular weight of polycarboxylate ether, by increasing the side chain, a better slump and flow in concrete was created.

Keywords

Subjects


[1] Chuang P.H., Tseng Y.H., Fang Y., Gui M., Ma X., and Luo J., Effect of Side Chain Length on Polycarboxylate Superplasticizer in Aqueous Solution: A Computational Study, J. Polymers, 11, 346-355, 2019.
[2] Ruijing Y., Deliang Z., Peng Z., and Weide W., Research Situation on macromolecule of Polycarboxylate Superplasticizer, J. Chem. Prod. and Tech., 18, 29-32, 2011.
[3] Dongkang F., Shaozu W., and He Xiaoji, Synthesis of Co-polycarboxylate Superplasticizer with Long Side Chain in Polyether and its Property, J. Concrete, 11, 39-42, 2007.
[4] Borget P., Galmiche L., Meins J.F.L., and Lafuma F., Microstructural characterisation and behaviour in different salt solutions of sodium polymethacrylate-g-PEO comb copolymers, J. Colloids and Surfaces A: Physicochemical and Eng. Aspects, 260, 173-182, 2005.
[5] Houst Y.F., Bowen P., Perche F., Kauppi A., Borget P., Galmiche L., Meins J.F.L, Lafuma F., Flatt R.J., Schober I.,. Banfill P.F.G, Swift D.S., Myrvold B.O., Petersen B.G., and Reknes K., Design and function of novel superplasticizers for more durable high performance concrete (superplast project), J. Cement and Concrete Res., 38(10), 1197-1209, 2008.
[6] Nawa T., Effect of chemical structure on steric stabilization of polycarboxylate-based superplasticizer, J. Adv. Concrete Tech., 4, 225-229,2006.
[7] Winnefeld F., Becker S., Pakush J., and Gotz T., Effects of the molecular architecture of comb-shaped superplasticizers on their performance in cementitious systems, J. Cement and Concrete Composites, 39, 251-260, 2007.
[8] Ran Q., Somasundaran P., Miao C., Liu J., Wu S., and Shen J., Effect of the length of the side chains of comb-like copolymer dispersants on dispersion and rheological properties of concentrated cement suspensions, J. Colloid and Interface Sci., 336, 624-633, 2009.
[9] Ruiping W., Zening X., and Guomin X., Synthesis and Performance of Polycarboxylate based Superplasticizer for Cement, J. Nan Jing Uni. of Tech., 31, 12-15, 2009.
[10] Rongping T., Jiawei W., and Xingkai Y., Synthesis and Performance of Polycarboxylate based Superplasticizer for Cement, J. China Construction Materials Tech., 6, 61-66, 2010.
[11] Jianhua H., Changchun W., and Wuli Y., Synthesis and Mechanism of poly(carboxylate) High- range Water Reducing Agent, J. Fudan Uni. (Nat. Sci.), 39, 463-466, 2000.
[12] Shun L., Qijun Y., and Jiangxiong W., Effect of molecular mass and its distribution on adsorption behavior of polycarboxylate water reducer, J. Chinese Ceramic Soc., 39, 80-86, 2011.
[13] Li C., Feng N., Li Y., and Chen R., Effect of polyethylene oxide chains on the performance of polycarboxylate-type water reducers, J. Cement and Concrete Res., 35, 867-873, 2005.
[14] Xiping L., and Hui L., Influence of Side Chain Density of Polycarboxylate Superplasticizer on Hydration of Cement, J. Bulletin of the Chinese Ceramic Soc., 28, 1254-1258, 2009.
[15] Baoguo M., Man Z., and Hongbo T., Influence of Side Chain Density of Polycarboxylate Superplasticizer on Characteristics of Cement early Hydration, J. New Construction Materials, 6, 41-43, 2008.
[16] Xueqing X., Xuehong H., and Yujuan H., Research of polycarboxylic copolymer side chain on the cement dispersing ability, J. Chem. Res. & Appl.,17, 825- 828, 2005.
[17] Jinmei G., Yanlin S., and Hong W., Study on Functional Group Modified Polycarboxylate-Type Superplasticizer, J. KunMing Uni. of Sci. & Tech., 35, 94-99, 2010.
[18] Benwei Z., Qiang X., and Hong G., Study on Relationship between Structure and Performance of Polycarboxylate Superplasticizer, J. Wuhan Ins. of Tech., 25, 15-19, 2005.
[19] Xiuxing M., Synthesis of New Polyether Polycarboxylate Superplasticizer, J. Wuhan Uni. of Tech., 25, 799-802, 2010.
[20] Mo X., Yu C., Feng X., and Jing Y., The Characterization and Application of Polycarboxylate as a Superplasticizer in Concrete, J. Adv. Materials Res., 739, 258-263, 2013.
[21] Wang Z., Lu Z., Lu F., and Li H., Relationship between Structure and Performance of Polycarboxylate Superplasticizer, J. Key Eng. Materials, 509, 57-64, 2012.