فروشویی و بازیابی سلنیم از لجن آندی مس سرچشمه

نوع مقاله : پژوهشی کوتاه

نویسندگان

1 دانشکده مهندسی شیمی، نفت وگاز، دانشگاه سمنان، سمنان، ایران

2 دانشکده مهندسی شیمی،نفت و گاز، دانشگاه سمنان،سمنان، ایران

3 پژوهشکده ی مواد و چرخه ی سوخت هسته ای، پژوهشگاه علوم وفنون هسته ای، سازمان انرژی اتمی ایران، تهران،ایران

چکیده
پارامترهای فروشویی و بازیابی کنترل کننده­ی رهش سلنیم از لجن آندی مس سرچشمه بررسی و تعیین شد. لجن آندی مس در حین تولید مس کاتدی در ته سلول های الکترولیت تولید می­شود که از اجزای نامحلول آند در الکترولیت تشکیل شده است. لجن مس، حاوی مقادیر مختلفی از فلزات با ارزش مانند طلا، نقره، سلنیم و تلوریم، و سایر فلزات گران­بهای موجود در مس آندی است که به عنوان محصول جانبی فرایند تولید مس استخراج می­شوند. امروزه منبع اصلی تهیه­ی سلنیم رسوبات سولفوری مانند مس و نیکل می باشد. لجن آندی مس در حال حاضر تنها منبع تهیه سلنیم در دنیا است. لجن­ آندی مس ماده­ی ­خام برای تولید بیش از %90 درصد سلنیم جهان و منبع اصلی تولید سلنیم است [1-3].در این پژوهش استخراج سلنیم از لجن آندی مس امکان­سنجی شده است. برای انجام این مهم از لیچینگ اسیدی بهره جسته شده است. در این مقاله تاثیر پارامترهای عملیاتی نظیر غلظت اسید، دما، زمان انجام فرایند و نسبت مایع به جامد بر بازیابی سلنیم از طریق لیچینگ لجن مس مورد بررسی قرار گرفت. شرایط بهینه­ی سرعت هم­زدن rpm250و نسبت جامد به مایع ­(W/V) 01/0 برای زمان تماس­60 دقیقه در دمای °C 70 به­دست آمد. در شرایط بهینه­، بازده فروشویی سلنیم %99 بود. داده­های ترمودینامیکی، نشان داد که مقادیر ΔH و ΔS هر دو مثبت می­باشد که نشان می­دهد که فرایند فروشویی در واقع گرماگیر و بی­نظم است در حالی که مقادیر منفی به دست آمده برای ΔG نشان می­دهد که فرایند انحلال سلنیم دارای ماهیت خودبه­خودی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Leaching and recovery of selenium from Sar-cheshmeh copper anode slimes

نویسندگان English

farnaz mahmoodiani 1
faramarz hormozi 2
Saeid Alamdar milani 3
1 Faculty of chemical engineering, Oil and Gas، Semnan university, Semnan, Iran
2 Faculty of chemical engineering, Oil and Gas, Semnan University, Seman, Iran
3 Nuclear Fuel Materials and Cycle Research Institute, Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran, Tehran, Iran
چکیده English

Abstract:

Research subject: Leaching and recovery parameters controlling the releasing of selenium from Sar-Cheshmeh copper anode slimes are studied and determined.

Research approach: Copper anode slimes is produced during the production of cathodic copper at the bottom of electrolyte cells, which is composed of insoluble anode components in the electrolyte. The copper anode slimes are made up of those components of the anodes, which are not soluble in the electrolyte. They contain varying quantities of precious metals like gold, silver, selenium and tellurium, and other precious metals in the anodic copper. They are being extracted as a by-product in the copper production process. Due to the fact that the main source of selenium is sulfur deposits such as copper and nickel. Copper anodic slimes is currently the only source of selenium in the world. In this study, the extraction of selenium from anodic copper slimes has been feasible. To do this, acid leaching has been used. Copper anodic sludge is the raw material for the production of more than 90% of the world's selenium and is the main source of selenium production.[1-3]

Main result: In this paper, the effect of operational parameters such as acid concentration, temperature, process time and liquid to solid ratio on selenium recovery through copper slimes leaching was investigated. The optimum conditions of batch leaching For maximum selenium extraction from anodic copper slimes are attained at 3 mol L-1 of HNO3 concentration, 0.01 (W/V) solid to liquid ratio for 60 min contact time at 70 º­C. Under the optimized conditions, the selenium leaching efficiency was 99%. The thermodynamic data showed positive values of both ΔH and ΔS which indicates that the leaching process is indeed endothermic and random while the obtained negative values of ΔG show that selenium dissolution process is spontaneous in nature.

کلیدواژه‌ها English

Selenium
leaching
Recovery
Nitric acid
Copper anod slimes
[1] A.Mamer, Processing Of Copper Anode-Slimes For Extraction Of Metal Values, Physicochemical Problems Of Mineral Processing, 36, 123-134, 2002.
[2] M. Abdollahy, The Treatment Of Sar-Cheshmeh Copper Anode Slimes, Ph.D. Thesis, Leeds University, U.K., 1996.
[3] M.H. Dehghanpoor, M. Zivdar, And M. Torabi, Extraction Of Copper And Gold From Anode Slime Of Sarcheshmeh Copper Complex, J. S. Afr. Inst. Min. Metall., 116, 1153-1157, 2016.
[4] R. Ranjbar, M. Naderi, H. Omidvar, Gh. Amoabediny, Gold Recovery From Copper Anode Slime By Means Of Magnetite Nanoparticles (MNPs), Hydrometallurgy 143, 54–59, 2014.
[5] K. Yasink, K. Guldem, T. Servet, An Investigation Of Copper and Selenium Recovery From Copper Anode Slimes [J]. International Journal Of Mineral Processing, 124,75-82, 2013.
[6] J E. Hoffmann, Recovering Selenium And Tellurium From Copper Refinery Slimes [J]. Journal Of The Minerals Metals Materials Society, 7,33-38, 1989.
[7] S. Syed, Recovery Of Gold From Secondary Sources-A Review [J]. Hydrometallurgy, 115,30-51, 2012.
[8] Yong-lu. WANG, Progress Of The Metallurgical Engineering Technology Of Precious Metals In China [J]. Precious Metals, 32,59-71, 2011.
[9] O. Hyvznen, E. Rosenberg, L. Lindroos, Selenium And Precious Metals Recovery From Copper Anode Slimes At Outokumpu Pori Refinery [M]// D A Kudry, N Corrigan, W W. Liang‌, Precious Metals. Warrendale, Pennsylvania: TMSíAIME, 537-548, 1984.
[10] Wei Ko Wang, Ying-Chu Hoh, Wen-Shou Chuang, I-Sine Shaw,, Hydrometallurgical Process For Recovering Precious Metals From Anode Slimes, US. Pat 4293332 & EP0020826A1 (1979).
[11] W. D. Xing, M. S. Lee, Development Of A Hydrometallurgical Process For The Recovery Of Gold And Silver Powders From Anode Slime Containing Copper, Nickel, Tin, And Zinc, Gold Bull, 52, 69–77, 2019.
[12] K. N. Subramanian, Malcolm C. E. Bell, John A. Thomas, Norman C. Nissen, Process For The Recovery Of Metal Values From Anode Slimes, US. Pat 4229270A Oct. 21, 1980.
[13] D. Ivšic, Z. Kamberovc, M. Kora, And V. Nikolc, Hydrometallurgical Process For Extraction Of Metals From Electronic Waste – Part 1: Material Characterization And Process Option Selection. Association Of Metallurgical Engineers Of Serbia 2009.
[14] C.C. Gaylarde, And H.A. Videla, Bioextraction And Biodeterioration Of Metals. Cambridge Univ. Press, 51-55, 1995.
[15] Jhumki Hait, R. K. Jana, Vinay Kumar, S. K. Sanyal, Some Studies On Sulfuric Acid Leaching Of Anode Slime With Additives, Ind. Eng. Chem. Res., 41,25,6593-6599,2002.
[16] R. Luo, N.M. Rice, N. Taylor, And R. Gee, A Study Of The Oxidative Dissolution Of Synthetic Copper–Silver Selenide Minerals Using The Intermittent Galvanostatic Polarization (IGP) Technique. Hydrometallurgy, 45,221–238, 1997.
[17] W. Liu,T. Yang, D. Zhang, L. Chen,Y. Liu, Pretreatment Of Copper Anode Slime With Alkaline Pressure Oxidative Leaching, International Journal Of Mineral Processing, 128,48-54, 2014.
[18] M. Abdollahy, Optimized Leaching Conditions For Selenium From Sar-Cheshmeh Copper Anode Slimes, Iran. J. Chem. & Chem. Eng., 23,101-108, 2004.
[19] M. Delavarian, M. Abdollahi, S. M. J. Koleini, Tellurium Recovery From Sarcheshme Copper Anode Slimes, PhD Thesis, Tarbiyat Modarres University 2002.
[20] Kudryavtsev A. A., The Chemistry And Technology Of Selenium And Tellurium, Collet's Ltd, London 1974.
[21] S.K, A. Kumar, To Study Selective Transport Of Ag (I) Ion Using Polymer Inclusion Membranes Containing Thiuram SulpHide As A Carrier 2009.
[22] S.K. Singh, S.K. Misra, M. Sudersanan, A. Dakshinamoorthy, S.K. Munshi, P.K. Dey, Carrier-Mediated Transport Of Uranium From Phosphoric acid medium across TOPO/n-dodecane-Supported Liquid Membrane, Hydrometallurgy 87,190–196,2007.
[23] Niedzielski P. , Siepak M., Analytical Methods For Determining Arsenic, Antimony And Selenium In Environmental Samples, Polish Journal Of Environmental Studies, 12 (‌6): 653-667,2003.
[24] Agrawal Y K, Menon S K, Yauvan Pancholi, Liquid-liquid Extraction, Preconcentration And Trace Determination Of Selenium With Rotanane, Indian Journal Of Chemistry, 42A: 3000-3005,2003.
[25] Z. Chenglong, Z. Youcai, Mechanochemical leaching of sphalerite In An Alkaline Solution Containing Lead Carbonate, Hydrometallurgy 100,56–59, 2009.
[26] F. Habashi, Handbook Of Extractive Hydrometallurgy, Vol. III, New York,13, 1650-1665, 1997.
[27] Atkins P, Paula J., Physical Chemistry. Eighth Edition, Great Britain By Oxford University Press,1053p, 2006.