[1] Https://www.Energy Information.ir/2016-04-20-05-26-30/886-2016-12-23-12-10-3, Available in 22 February 2020.
]2 [کوراوند و همکاران، خوردگی و آسیب های مکانیکی ناشی از احتراق سوخت مازوت در نیروگاه، اولین کنفرانس پیشرفتهای نوین در حوزه انرژی، ساوه، موسسه آموزش عالی انرژی، 1394.
[3] Khaleghi, M. S. B., Markadeh, R. S., & Ghassemi, H., Thermodynamic Evaluation of Mazut Gasification for Using in Power Generation. Petroleum Science and Technology, 34(6), 531-538, 2016.
[4] Henderson, J, and Bassam F., The Impact of Russia’s Refinery Upgrade Plans on Global Fuel Oil Markets, 2012.
[5] Kouravand, S., & Kermani, A. M., Clean Power Production by Simultaneous Reduction of Nox And Sox Contaminants Using Mazut Nano-Emulsion and Wet Flue Gas Desulfurization. Journal of Cleaner Production, 201, 229-235, 2018.
[6] Gulyaeva, L. A., Lobashova, M. M., Mitusova, T. N., Shmel’kova, O. I., Khavkin, V. A., & Nikul’shin, P. A., Production of Low-Sulfur Marine Fuel. Chemistry and Technology of Fuels and Oils, 1-8, 2020.
[7] Hosseini, K., & Stefaniec, A., Efficiency Assessment of Iran's Petroleum Refining Industry in The Presence of Unprofitable Output: A Dynamic Two-Stage Slacks-Based Measure. Energy, 189, 116112, 2019.
[8] Demirbas, A., Alidrisi, H., & Balubaid, M. A., API Gravity, Sulfur Content, And Desulfurization of Crude Oil. Petroleum Science and Technology, 33(1), 93-101, 2015.
[9] Houda, S, et al. Oxidative Desulfurization of Heavy oils with High Sulfur Content: A Review. Catalysts 8.9, 2018.
[10] Gaile, A. et al., Refining of Diesel and Ship Fuels by Extraction and Combined Methods. Part 2. Use of Organic Solvents as Extractants., Russian Journal of Applied Chemistry 92.5, 2019.
]11 [یوسفعلی قربانی. بررسی روش های حذف ترکیبات گوگرددار از نفت خام، فصلنامه علمی ترویجی فرآیند نو 8، 43، 19-39، 1392.
[12] Li, G. R., Chen, Y., An, Y., & Chen, Y. L., Catalytic Aquathermolysis of Super-Heavy Oil: Cleavage of CS Bonds and Separation of Light Organosulfurs. Fuel Processing Technology, 153, 94-100, 2016.
[13] Ma, R., Guo, J., Wang, D., He, M., Xun, S., Gu, J., ... & Li, H., Preparation of Highly Dispersed WO3/Few Layer G-C3N4 And Its Enhancement of Catalytic Oxidative Desulfurization Activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 572, 250-258, 2019.
[14] Liu, H., Bao, S., Cai, Z., Xu, T., Li, N., Wang, L., & Chen, W., A Novel Method for Ultra-Deep Desulfurization of Liquid Fuels at Room Temperature. Chemical Engineering Journal, 317, 1092-1098, 2017.
[15] Okasha, F. M., El-Emam, S. H., & Mostafa, H. K., The Fluidized Bed Combustion of a Heavy Liquid Fuel. Experimental Thermal and Fluid Science, 27(4), 473-480, 2003.
[16] Shankar, N., V, et al. Steady State Optimization and Characterization of Crude Oil Using Aspen HYSYS. Petroleum Science and Technology 34.13, 2016.
[17] Liu, et al. Petroleum Refinery Process Modeling: Integrated Optimization Tools and Applications. John Wiley & Sons, 2018.
[18] Leibovici, Claude F. A Consistent Procedure for The Estimation of Properties Associated to Lumped Systems. Fluid Phase Equilibria 87(2), 1993.
[19] Poling, B. E., Prausnitz, J. M., & O'connell, J. P., The Properties of Gases and Liquids, 5 th Edition, New York: McGraw-Hill, 2001.
[20] Wang, Yalin, et al. Modeling and Simulation of Reaction and Fractionation Systems for the Industrial Residue Hydrotreating Process. Processes 8(1), 2020.
]21 [پورمقدم پیمان و همکاران، ارزیابی فنی و اقتصادی فرآیند سولفورزدایی هیدروتریتینگ در نیروگاههای ایران، مطالعه موردی برای نیروگاه شازند اراک. سی و یکمین کنفرانس بینالمللی برق، تهران، ایران، 1395.
[22] George T. Stevenin. Petroleum Desulfurization.: IHS Markit. Accessed July, 15, 1975.
[23] Paiko, I. I., Azeez, O., & Makwashi, N., Pinch Analysis in Optimising Energy Consumption on a Naphtha Hydrotreating Unit in a Refinery. Petroleum & Petrochemical Engineering Journal, 1(5), 1-11, 2017.
[24] Calderón, C. J., & Ancheyta, J., Modeling, Simulation, and Parametric Sensitivity Analysis of a Commercial Slurry-Phase Reactor for Heavy Oil Hydrocracking. Fuel, 244, 258-268, 2019.
[25] Bandyopadhyay, R., & Upadhyayula, S., Thermodynamic Analysis of Diesel Hydrotreating Reactions. Fuel, 214, 314-321, 2018.
[26] Zhou, H., Lu, J., Cao, Z., Shi, J., Pan, M., Li, W., & Jiang, Q., Modeling and Optimization of an Industrial Hydrocracking Unit to Improve the Yield of Diesel or Kerosene. Fuel, 90(12), 3521-3530, 2011.
[27] Rana, M. S., Sámano, V., Ancheyta, J., & Diaz, J. A. I., A Review of Recent Advances on Process Technologies for Upgrading of Heavy Oils and Residua. Fuel, 86(9), 1216-1231, 2007.
[28] Gökçe, D. Model Predictive Controller Design of Hydrocracker Reactors. Turkish Journal of Electrical Engineering & Computer Sciences 19.5, 2011.
[29] Mapiour, M., Sundaramurthy, V., Dalai, A. K., & Adjaye, J., Effects of the Operating Variables on Hydrotreating of Heavy Gas Oil: Experimental, Modeling, and Kinetic Studies. Fuel, 89(9), 2536-2543, 2010.
[30] Https://www.Alibaba.com/Showroom/Refinary+Mazut+Price, Available in 29 February 2020.
[31] Chang, A. F., Pashikanti, K., & Liu, Y. A., Refinery Engineering: Integrated Process Modeling and Optimization. John Wiley & Sons, 2013.