[1] Cook, T. R., Dogutan, D. K., Reece, S. Y., Surendranath, Y., Teets, T. S., & Nocera, D. G, Solar Energy Supply and Storage for The Legacy and Nonlegacy Worlds, Chemical Reviews, 110(11): 6474-6502, (2010).
[2] Centi, G., & Perathoner, S,Towards Solar Fuels from Water and CO2. ChemSusChe: Chemistry & Sustainability Energy & Materials: 3(2): 195-208, (2010).
[3] Habisreutinger, S. N., Schmidt‐Mende, L., & Stolarczyk, J. K, Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors, Angewandte Chemie International Edition, 52(29): 7372-7408 (2013).
[4] Centi, G., & Perathoner, S, Opportunities and Prospects in the Chemical Recycling of Carbon dioxide to Fuels, Catalysis Today, 148(3-4): 191-205 (2009).
[5] Torres, J.A., Nogueira, A.E., da Silva, G.T., Lopes, O.F., Wang, Y., He, T. and Ribeiro, C. Enhancing TiO2 activity for CO2 photoreduction through MgO decoration. Journal of CO2 Utilization, 35, pp.106-114, (2020).
[6] Zhao, Q., Li, H., Zhang, L. and Cao, Y., Study of PdO Species on Surface of TiO2 for Photoreduction of CO2 into CH4. Journal of Photochemistry and Photobiology A: Chemistry, 384, p.112032, 2019.
[7] Low, J., Cheng, B., & Yu, J, Surface Modification and Enhanced Photocatalytic CO2 Reduction Performance of TiO2: A Review, Applied Surface Science, 392: 658-686 (2017).
[8] Lingampalli, S. R., Ayyub, M. M., & Rao, C. N. R, Recent Progress in the Photocatalytic Reduction of Carbon dioxide, ACS omega, 2(6): 2740-2748 (2017).
[9] Nolan, M, Adsorption of CO2 on Heterostructures of Bi2O3 Nanocluster-Modified TiO2 and the Role of Reduction in Promoting CO2 Activation, ACS Omega, 3(10): 13117-13128 (2018).
[10] Liu, Lizhen, Hongwei Huang, Fang Chen, Hongjian Yu, Na Tian, Yihe Zhang, and Tierui Zhang. "Cooperation of Oxygen Vacancies and 2D Ultrathin Structure Promoting CO2 Photoreduction Performance of Bi4Ti3O12." Science Bulletin (2020).
[11] Kong, X.Y., Ng, B.J., Tan, K.H., Chen, X., Wang, H., Mohamed, A.R. and Chai, S.P., Simultaneous Generation of Oxygen Vacancies on Ultrathin BiOBr Nanosheets During Visible-Light-Driven CO2 Photoreduction Evoked Superior Activity and Long-term Stability. Catalysis Today, 314, pp.20-27 (2018).
[12] Ye, L., Deng, Y., Wang, L., Xie, H. and Su, F., Bismuth‐Based Photocatalysts for Solar Photocatalytic Carbon Dioxide Conversion. ChemSusChem, 12(16), pp.3671-3701 (2019).
[13] Wu, J., Li, X., Shi, W., Ling, P., Sun, Y., Jiao, X., Gao, S., Liang, L., Xu, J., Yan, W. and Wang, C., Efficient Visible‐Light‐Driven CO2 Reduction Mediated by Defect‐Engineered BiOBr Atomic Layers. Angewandte Chemie, 130(28), pp.8855-8859 (2018).
[14] Bai, Y., Yang, P., Wang, L., Yang, B., Xie, H., Zhou, Y. and Ye, L., Ultrathin Bi4O5Br2 Nanosheets for Selective Photocatalytic CO2 Conversion into CO. Chemical Engineering Journal, 360, pp.473-482 (2019).
[15] Jin, X., Lv, C., Zhou, X., Xie, H., Sun, S., Liu, Y., Meng, Q. and Chen, G., A bismuth rich Hollow Bi4O5Br2 Photocatalyst Enables Dramatic CO2 Reduction Activity. Nano Energy, 64, p.103955 (2019).
[16] Xiao, L., Lin, R., Wang, J., Cui, C., Wang, J. and Li, Z., A novel Hollow-hierarchical Structured Bi2WO6 with Enhanced Photocatalytic Activity for CO2 Photoreduction. Journal of colloid and interface science, 523, pp.151-158 (2018).
[17] Xiong, Z., Lei, Z., Kuang, C. C., Chen, X., Gong, B., Zhao, Y., & Wu, J. C, Selective Photocatalytic Reduction of CO2 into CH4 over Pt-Cu2O TiO2 nanocrystals: The Interaction between Pt and Cu2O Cocatalysts, Applied Catalysis B: Environmental, 202: 695-703 (2017).
[18] Zhang, M., Cheng, G., Wei, Y., Wen, Z., Chen, R., Xiong, J., Li, W., Han, C. and Li, Z., Cuprous ion (Cu+) Doping Induced Surface/Interface Engineering for Enhancing the CO2 Photoreduction Capability of W18O49 Nanowires. Journal of Colloid and Interface Science, (2020).
[19] Zhao, J., Li, Y., Zhu, Y., Wang, Y. and Wang, C., Enhanced CO2 photoreduction activity of black TiO2− coated Cu nanoparticles under visible light irradiation: Role of metallic Cu. Applied Catalysis A: General, 510, pp.34-41 (2016).
[20] Spurr, R.A. and Myers, H. Quantitative Analysis of Anatase-Rutile Mixtures with an X-ray Diffractometer. Analytical chemistry, 29(5), pp.760-762, (1957).
[21] Miyagi, T., Kamei, M., Mitsuhashi, T., Ishigaki, T., & Yamazaki, A, Charge Separation at the Rutile/Anatase Interface: A Dominant Factor of Photocatalytic Activity, Chemical Physics Letters, 390(4-6): 399-402 (2004).
[22] Tahir, M. and Amin, N.S., Photocatalytic CO2 Reduction and Kinetic Study over In/TiO2 Nanoparticles Supported Microchannel Monolith Photoreactor. Applied Catalysis A: General, 467, pp.483-496, (2013).
[23] Wetchakun, N., Incessungvorn, B., Wetchakun, K. and Phanichphant, S. Influence of Calcination Temperature on Anatase to Rutile Phase Transformation in TiO2 Nanoparticles Synthesized by the Modified sol–gel Method. Materials Letters, 82, pp.195-198, (2012).
[24] Bagwasi, S., Tian, B., Zhang, J., & Nasir, M, Synthesis, Characterization and Application of Bismuth and Boron Co-doped TiO2: A Visible Light Active Photocatalyst, Chemical Engineering Journal, 217: 108-118 (2013).
[25] Farbod, M., & Khademalrasool, M, Synthesis of TiO2 Nanoparticles by a Combined sol–gel Ball Milling Method and Investigation of Nanoparticle Size Effect on Their Photocatalytic Activities, Powder technology, 214(3): 344-348 (2011).
[26] Tasbihi, M., Fresno, F., Simon, U., Villar-García, I.J., Pérez-Dieste, V., Escudero, C. and Víctor, A., On the Selectivity of CO2 Photoreduction Towards CH4 Using Pt/TiO2 Catalysts Supported on Mesoporous Silica. Applied Catalysis B: Environmental, 239, pp.68-76 (2018).
[27] Abdullah, H., Khan, M. M. R., Ong, H. R., & Yaakob, Z, Modified TiO2 Photocatalyst for CO2 Photocatalytic Reduction: An Overview, Journal of CO2 Utilization, 22,: 15-32 (2017).
[28] Dilla, M., Schlögl, R. and Strunk, J., Photocatalytic CO2 Reduction Under Continuous Flow High‐Purity Conditions: Quantitative Evaluation of CH4 Formation in the Steady‐State. ChemCatChem, 9(4), pp.696-704, (2017).
[29] Dilla, M., Becerikli, A.E., Jakubowski, A., Schlögl, R. and Ristig, S., Development of a Tubular Continuous Flow Reactor for the Investigation of Improved Gas–Solid Interaction in photocatalytic CO2 Reduction on TiO2. Photochemical & Photobiological Sciences, 18(2), pp.314-318, (2019).
[30] Walker, R. J., Pougin, A., Oropeza, F. E., Villar-Garcia, I. J., Ryan, M. P., Strunk, J., & Payne, D. J, Surface Termination and CO2 Adsorption onto Bismuth Pyrochlore oxides, Chemistry of Materials, 28(1): 90-96 (2015).
[31] Zhao, L., Cui, T., Li, Y., Wang, B., Han, J., Han, L., & Liu, Z, Efficient Visible Light Photocatalytic Activity of p–n Junction CuO/TiO2 Loaded on Natural Zeolite, RSC Advances, 5(79): 64495-64502 (2015).
[32] Tasbihi, M., Schwarze, M., Edelmannová, M., Spöri, C., Strasser, P., & Schomäcker, R, Photocatalytic Reduction of CO2 to Hydrocarbons by Using Photodeposited Pt Nanoparticles on Carbon-doped Titania, Catalysis Today, 328: 8-14 (2019).