[1] Paul D.R. and Robeson L.M., Polymer Nanotechnology: Nanocomposites, Polymer, 49: 3187-3204, 2008.
[2] Li B. and Zhong W-H., Review on Polymer/Graphite Nanoplatelet Nanocomposites, J. Mater. Sci., 46: 5595-5614, 2011.
[3] Li Y., Zhu J., Wei S., Ryu J., Wang Q., Sun L. and et al., Poly(propylene) Nanocomposites Containing Various Carbon Nanostructures, Macromol. Chem. Phys., 212: 2429-2438, 2011.
[4] Kim H., Abdala A.A. and Macosko C.W., Graphene/Polymer Nanocomposites, Macromolecules, 43: 6515-6530, 2010.
[5] Salzano de Luna M., Wang Y., Zhai T., Verdolotti L., Buonocore G.G., Lavorgna M. and et al., Nanocomposite Polymeric Materials with 3D Graphene-based Architectures: From Design Strategies to Tailored Properties and Potential Applications, Prog. Polym. Sci., 89: 213-249, 2019.
[6] Potts J.R., Dreyer D.R., Bielawski C.W. and Ruoff R.S., Graphene-based Polymer Nanocomposites, Polymer, 52: 5-25, 2011.
[7] Zhang K., Li G-H., Feng L-M., Wang N., Guo J., Sun K. and et al., Ultralow Percolation Threshold and Enhanced Electromagnetic Interference Shielding in Poly(l-lactide)/Multi-walled Carbon Nanotube Nanocomposites with Electrically Conductive Segregated Networks, J. Mater. Chem. C, 5: 9359-9369, 2017.
[8] Dashairya L., Rout M. and Saha P., Reduced Graphene Oxide-Coated Cotton as An Efficient Absorbent in Oil-Water Separation, Adv. Compos. Hybrid Mater., 1:135-148, 2018.
[9] Li Y., Zhou B., Zheng G., Liu X., Li T., Yan C. and et al., Continuously Prepared Highly Conductive and Stretchable SWNT/MWNT Synergistically Composited Electrospun Thermoplastic Polyurethane Yarns for Wearable Sensing, J. Mater. Chem. C, 6: 2258-2269, 2018.
[10] Shi G., Araby S., Gibson C.T., Meng Q., Zhu S. and Ma J., Graphene Platelets and Their Polymer Composites: Fabrication, Structure, Properties, and Applications, Adv. Func. Mater., 28: 1706705, 2018.
[11] Gonçalves C., Pinto A., Machado A.V., Moreira J., Gonçalves I.C. and Magalhães F., Biocompatible Reinforcement of Poly(Lactic acid) with Graphene Nanoplatelets, Polym. Compos., 39: 308-320, 2018.
[12] Behera K., Yadav M., Chiu F-C. and Rhee K.Y., Graphene Nanoplatelet-Reinforced Poly(vinylidene fluoride)/High Density Polyethylene Blend-Based Nanocomposites with Enhanced Thermal and Electrical Properties, Nanomaterials, 9: 361, 2019.
[13] Zaman I., Phan T.T., Kuan H-C., Meng Q., Bao La L.T., Luong L. and et al., Epoxy/Graphene Platelets Nanocomposites with Two Levels of Interface Strength, Polymer, 52: 1603-1611, 2011.
[14] Kim J., Cha J., Jun G.H., Yoo S.C., Ryu S. and Hong S.H., Fabrication of Graphene Nanoplatelet/Epoxy Nanocomposites for Lightweight and High-Strength Structural Applications, Part, Part. Sys. Charac., 35: 1700412, 2018.
[15] Patti A., Russo P., Acierno D. and Acierno S., The Effect of Filler Functionalization on Dispersion and Thermal Conductivity of Polypropylene/Multi wall Carbon Nanotubes Composites, Compos. Part B Eng., 94: 350-359, 2016.
[16] Jiang J., Liu X., Lian M., Pan Y., Chen Q., Liu H. and et al., Self-Reinforcing and Toughening Isotactic Polypropylene via Melt Sequential Injection Molding, Polym. Test., 67: 183-189, 2018.
[17] Bunsell A.R. (Ed.), Handbook of Properties of Textile and Technical Fibres, 2nd ed., Woodhead Publishing, 515-543, 2018.
[18] Cromer B.M., Scheel S., Luinstra G.A., Coughlin E.B. and Lesser A.J., In-Situ Polymerization of Isotactic Polypropylene-Nanographite Nanocomposites, Polymer, 80: 275-281, 2015.
[19] Hsu P-C. and Tsai I-S., Fabrication and Mechanical Properties of Low-Loading Graphene Nanosheets Encapsulated on the Surface of Graphene Nanosheets/Polypropylene Composites, Micro Nano Lett., 10: 439-342, 2015.
[20] Galindo B., Benedito A., Gimenez E. and Compañ V., Comparative Study Between the Microwave Heating Efficiency of Carbon Nanotubes Versus Multilayer Graphene in Polypropylene Nanocomposites, Compos. Part B Eng., 98: 330-338, 2016.
[21] Bafana A.P., Yan X., Wei X., Patel M., Guo Z., Wei S. and et al., Polypropylene Nanocomposites Reinforced with Low Weight Percent Graphene Nanoplatelets, Compos. Part B Eng., 109: 101-107, 2017.
[22] Jun Y-S., Um J.G., Jiang G., Lui G. and Yu A., Ultra-Large Sized Graphene Nano-Platelets (GnPs) Incorporated Polypropylene (PP)/GnPs Composites Engineered by Melt Compounding and Its Thermal, Mechanical, and Electrical Properties, Compos. Part B Eng., 133: 218-225, 2018.
[23] Ren Y., Zhang Y., Fang H., Ding T., Li J. and Bai S-L., Simultaneous Enhancement on Thermal and Mechanical Properties of Polypropylene Composites Filled with Graphite Platelets and Graphene Sheets, Compos. Part A Appl. Sci. Manuf., 112: 57-63, 2018.
[24] Mistretta M.C., Botta L., Vinci A.D., Ceraulo M. and La Mantia F.P., Photo-Oxidation of Polypropylene/Graphene Nanoplatelets Composites, Polym. Deg. Stab., 160: 34-43, 2019.
[25] Nilsson E., Oxfall H., Wandelt W., Rychwalski R. and Hagström B., Melt Spinning of Conductive Textile Fibers with Hybridized Graphite Nanoplatelets and Carbon Black Filler, J. Appl. Polym. Sci., 130: 2579-2587, 2013.
[26] Kalantari B., Mohaddes Mojtahedi M.R., Sharif F. and Semnani Rahbar R., Effect of Graphene Nanoplatelets Presence on the Morphology, Structure, and Thermal Properties of Polypropylene in Fiber Melt-Spinning Process, Polym. Compos., 36: 367-375, 2015.
[27] Kalantari B., Mohaddes Mojtahedi M.R., Sharif F. and Semnani Rahbar R., Flow-Induced Crystallization of Polypropylene in the Presence of Graphene Nanoplatelets and Relevant Mechanical Properties in Nanocompsoite Fibres, Compos. Part A Appl. Sci. Manuf., 76: 203-214, 2015.
]28[ سمنانی رهبر، روحاله؛ کلانتری، بهاره؛ محدث مجتهدی، محمدرضا؛ شریف، فرهاد، تاثیر جریان تطویلی بر شکلگیری و ظهور ساختار در الیاف نانو کامپوزیت پلیپروپیلن/نانو صفحات گرافن، مجله نانو مواد، 30(9): 91 تا 106، (1396).
[29] La Mantia F.P., Ceraulo M., Mistretta M.C. and Botta L., Effect of the Elongational Flow on Morphology and Properties of Polypropylene/Graphene Nanoplatelets Nanocomposites, Polym. Test., 71: 10-17, 2018.
[30] Brandrup J., and Immergut E.H., Polymer Handbook, 3rd ed., New York, Wiley Interscience, 2000.
[31] Duguay A.J., Kiziltas A., Nader J.W., Gardner D.J. and Dagher H.J., Impact Properties and Rheological Behavior of Exfoliated Graphite Nanoplatelet-Filled Impact Modified Polypropylene Nanocomposites, J. Nanopart. Res., 16: doi:10.1007/s11051-014-2307-4, 2014.
[32] Rabiej M. and Rabiej S., Modeling of Polymer Structure with the Use of SAXSDAT Computer Program, Solid State Phenom., 203-204:185-188, 2013.
[33] Hegde R.R., Spruiell J.E. and Bhat G.S., Investigation of the Morphology of Polypropylene − Nanoclay Nanocomposites, Polym. Int., 63: 1112-1121, 2014.
[34] Tabatabaei S.H., Carreau P.J. and Ajji A., Effect of Processing on the Crystalline Orientation, Morphology, and Mechanical Properties of Polypropylene Cast Films and Microporous Membrane Formation, Polymer, 50: 4228-4240, 2009.
[35] Sadeghi F., Ajji A. and Carreau P.J., Analysis of Row Nucleated Lamellar Morphology of Polypropylene Obtained from the Cast Film Process: Effect of Melt Rheology and Process Conditions, Polym. Eng. Sci., 47: 1170-1178, 2007.
[36] Hussain F., Hojjati M., Okamoto M. and Gorga R.E., Polymer-Matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview, J. Compos. Mater., 40: 1511-1575, 2006.
[37] Duguay A.J., Nader J.W., Kiziltas A., Gardner D.J. and Dagher H.J., Exfoliated Graphite Nanoplatelet-Filled Impact Modified Polypropylene Nanocomposites: Influence of Particle Diameter, Filler Loading, and Coupling Agent on the Mechanical Properties, Appl. Nanosci., 4: 279-291, 2014.
[38] Sheng N., Boyce M.C., Parks D.M., Rutledge G.C., Abes J.I. and Cohen R.E., Multiscale Micromechanical Modeling of Polymer/Clay Nanocomposites and the Effective Clay Particle, Polymer, 45: 487-506, 2004.
[39] Greco A., Lionetto F. and Maffezzoli A., Orientation of Graphene Nanoplatelets in Thermosetting Matrices, IEEE T. Nanotechnol., 15: 877-883, 2016.
[40] Ahmad S.R., Xue C. and Young R.J., The Mechanisms of Reinforcement of Polypropylene by Graphene Nanoplatelets, Mater. Sci. Eng. B, 216: 2-9, 2017.
[41] Kalaitzidou K., Fukushima H., Miyagawa H. and Drzal L.T., Flexural and Tensile Moduli of Polypropylene Nanocomposites and Comparison of Experimental Data to Halpin-Tsai and Tandon-Weng Models, Polym. Eng. Sci., 47: 1796-1803, 2007.
[42] Liu H., Hou L., Peng W., Zhang Q. and Zhang X., Fabrication and Characterization of Polyamide 6-Functionalized Graphene Nanocomposite Fiber, J. Mater. Sci., 47: 8052-8060, 2012.
[43] Lee C., Wei X., Kysar J.W. and Hone J., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, 321: 385-388, 2008.