اثر عامل پخت، دما و کنشیار بر خواص فیزیکی-مکانیکی ماده مرکب بسیار پرشده بر پایه HTPB

نوع مقاله : پژوهشی اصیل

نویسندگان

دانشگاه جامع امام حسین (ع)

چکیده
با توجه به پژوهش­های انجام‌شده روی رفتار شیمی-رئولوژیکی ماده مرکب پرانرژی، دوغاب ماده مرکب پرانرژی بر‌پایه HTPB باید در پایان اختلاط دارای گرانروی مناسبی جهت سهولت ریخته‌گری باشد. به‌عبارت‌دیگر بازه زمانی موجود برای ریخته­گری ماده مرکب پرانرژی پس از افزودن عامل­پخت را عمرکاربری گویند. عمرکاربری طولانی برای سیستم محمل HTPB به‌منظور سهولت فرآیند­پذیری و تولید توده ماده مرکب پرانرژی بدون نقص ضروری می­باشد. در کنار عمرکاربری بالا بایستی به خواص فیزیکی-مکانیکی ماده مرکب پرانرژی بر‌پایه HTPB نیز توجه کرد. در پژوهش حاضر اثر نوع (ساختار) عامل پخت، دمای ریخته‌گری و مقدار کنشیار پخت DBTDL، بر رفتار شیمی-رئولوژیکی سیستم محمل و خواص فیزیکی-مکانیکی مواد مرکب­ پرانرژی بر پایه HTPB مورد بررسی قرار گرفت. سه نوع عامل پخت TDI، IPDI و HDI انتخاب شدند تا اثر ساختار مولکولی بر عمرکاربری سیستم محمل و دوغاب آن و همچنین بر خواص مکانیکی مواد مرکب پرانرژی بررسی شود. همچنین، دماهای ˚C 40، 50 و 60 جهت بررسی اثر دمای ریخته‌گری بر رفتار شیمی-رئولوژیکی در نظر گرفته شدند. نتایج بررسی اثر دما نشان داد با هر ˚C 10 کاهش دمای ریخته‌گری، حدود min 10 عمرکاربری سیستم محمل (IPDI و TDI) افزایش می‌یابد. عمرکاربری سیستم محمل و دوغاب ماده مرکب­ پرانرژی برپایه IPDI در حضور مقدار بهینه از کنشیار DBTDL (% 005/0)، در دماهای یکسان نسبت به دو عامل پخت دیگر، طولانی­ترین عمرکاربری را ارائه کرد. بر اساس نتایج، الاستومر و ماده مرکب­ پرانرژی بر پایه IPDI بیشترین چگالی اتصالات عرضی را نسبت به سایر عوامل پخت دارد؛ همچنین ماده مرکب پرانرژی بر پایه IPDI بیشترین مدول و چگالی اتصالات عرضی را با حفظ استحکام کششی و ازدیاد طول مناسب، نسبت به سایر عوامل پخت دارد.






کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of Curing Agent, Temperature, and Catalyst on Physical-Mechanical Properties of HTPB-Based Highly-filled Composite

نویسندگان English

Hadi Mohammad Taghi Nejad
Abbas Kebritchi
Jahanbakhsh Mombini
Imam Hossein Comprehensive University
چکیده English

Regarding new researches on chemorheology of energetic composites,it is determined that HTPB slurry should have convenient viscosity for ease of casting. In the other word, available time for appropriate casting of energetic composite after curative addition called pot-life. Long pot-life of HTPB binder system is necessarily for good processability and non-defect production of energetic composite grains. In addition to long pot-life, the physical-mechanical properties of HTPB energetic composite are of at most important. In this research, effect of curative type (structure), casting temperature and the amount of DBTDL as a curing catalyst on chemorheological behavior of HTPB binder system and physical-mechanical properties of energetic composite were investigated. Toluene diisocyanate (TDI), Isophorone diisocyanate (IPDI) and Hexamethylene diisocyanate (HDI) were selected in order to investigate the role of molecular structure of curing agent on Chemorheology of binder system and its slurry and also on physical-mechanical properties of energetic composite. Moreover, temperatures of 40, 50 and 60 ˚C, were selected to study the effect of casting temperature on chemorheology. By decreasing each 10˚C of casting temperature, pot-life of binder system (IPDI and TDI) was increased about 10 min. Pot-life of binder system and energetic composite slurry based on IPDI in the presence of 0.005% DBTDL (the optimum content) at similar temperatures, showed the longest pot-life. The elastomer and energetic composite based on IPDI showed the most crosslinking density (CLD) and modulus in comparison to other curing agents with retain of tensile strength and adequate elongation.

کلیدواژه‌ها English

DBTDL catalyst
Casting Temperature
curing agent
pot Life
chemorheology
[1] Lade R., Wasewar K., Sangtyani R., Kumar A., Shende D. and Peshwe D., Effect of aluminum nanoparticles on rheological behavior of HTPB-based composite rocket propellant, J. Energ. Mater., 16, 1-16, 2018
[2] Sekkar V., Ambika D. and Ninan K., Rheo‐Kinetic Evaluation on the Formation of Urethane Networks Based on Hydroxyl‐Terminated Polybutadiene, J. Appl. Polym. Sci., 79, 1869-1876, 2001
[3] Rao M., Scariah K., VargheseA., Naik P., Swamy K. and Sastri K., Evaluation of Criteria for Blending Hydroxy Terminated Polybutadiene (HTPB) Polymers Based on Viscosity Build-Up and Mechanical Properties of Gumstock, Eur. Polym. J., 36, 1645-1651, 2000
[4] Mahanta A. and Monika G., Analysis of Torque-Time Profile of Composite Propellant Slurry: Isothermal Cure Kinetics and Evaluation of Pot Life, J. Ind. Council Chem., 26, 94-99, 2009
[5] Sekkar V. and Raunija T. S. K., Hydroxyl-Terminated Polybutadiene-Based Polyurethane Networks as Solid Propellant Binder-State of the Art, J. Propul. Power., 31, 16-35, 2014
[6] Mahanta A. K., Dharmsaktu I. and Pattnayak P. K., Rheological Behaviour of HTPB-Based Composite Propellant: Effect of Temperature and Pot Life on Casting Rate, Defence Sci. J., 57, 435-442, 2007
[7] Korah Bina C., Kannan K. G. and Ninan K. N., DSC Study on the Effect of Isocyanates and Catalysts on the HTPB Cure Reaction, J. Therm. Anal. Calorim., 78.3, 753-760, 2004
[8] Maggi F., Curing Viscosity of HTPB‐Based Binder Embedding Micro and Nano‐Aluminum Particles, Propellants. Explos. Pyrotech., 39, 755-60, 2014
[9] Lucio B. and Fuente J. L,. Rheological cure characterization of an advanced functional polyurethane, Thermochim. Acta., 19, 6-13, 2014
[10] Lucio B. and de la Fuente J.L., Kinetic and chemorheological modelling of the polymerization of 2, 4-Toluenediisocyanate and ferrocene-functionalized hydroxyl-terminated polybutadiene, Polym., 140, 290-303, 2018
[11] Guo J., Chai T., Liu Y., Cui J., Ma H., Jing S., Zhong L., Qin S., Wang G. and Ren X., Kinetic Research on the Curing Reaction of Hydroxyl-Terminated Polybutadiene Based Polyurethane Binder System via FT-IR Measurements, Coat., 8, 175-184, 2018
[12] Jawalkar S. N., Studies on The Effect of Plasticiser and Addition of Toluene Diisocyanate at Different Temperatures in Composite Propellant Formulations, J. Hazard. Mater., 164.2, 549-554, 2009
[13] Mahanta A. K., Monika G. and Devendra D. P., Rheokinetic Analysis of Hydroxy Terminated Polybutadiene Based Solid Propellant Slurry, J. Chem., 7.1, 171-179, 2010
[14] Mahanta A. and Goyal M., Analysis Of Torque-Time Profile Of Composite Propellant Slurry: Isothermal Cure Kinetics And Evaluation Of Pot Life, J. Ind. Council Chem., 26, 94-99, 2009
[15] Chai T., Liu Y.C., Ma H., Yu Y.W., Yuan J.M., Wang J.H. and Guo J.H., Rheokinetic Analysis on the Curing Process of HTPB-DOA-MDI Binder System, IOP Conference Series: Mater. Sci. Eng, Hangzhou, China., 4, 1-8, 2016
[16] Sekkar V. and Raunija T. S. K., Issues Related with Pot Life Extension for Hydroxyl-Terminated Polybutadiene-Based Solid Propellant Binder System, Propellants. Explos. Pyrotech., 40, 267-274, 2015
[17] Ducruet N., Delmotte L., Schrodj G., Stankiewicz F., Desgardin N., Vallat M. F. and Haidar B., Evaluation of hydroxyl terminated polybutadiene‐isophorone diisocyanate gel formation during crosslinking process, J. Appl. Polym. Sci., 128, 436-443, 2013
[18] Kurva R., Gupta G., Dhabbe K. I., Jawale L. S., Kulkarni P. S. and Maurya M., Evaluation of 4-(Dimethylsilyl) Butyl Ferrocene GrGafted HTPB as a Burning Rate Modifier in Composite Propellant Formulation using Bicurative System, Propellants. Explos. Pyrotech., 42, 401-409, 2017
[19] Jawalkar S. N., Kurva R., Singh P. P. and Bhattacharya B., Influence of bicurative on processibility of composite propellant, Defence Sci. J., 57, 669-678, 2007
[20] Delebecq E., Pascault J. P., Boutevin B. and Ganachaud F. O., On the Versatility of Urethane/Urea Bonds: Reversibility, Blocked Isocyanate, and Non-Isocyanate Polyurethane, Chem. Rev., 113, 80-118, 2012
[21] Sekkar V., Venkatachalam S. and Ninan K. N., Rheokinetic Studies on the Formation of Urethane Networks Based on Hydroxyl Terminated Polybutadiene, Eur. Polym. J., 38.1, 169-178, 2002
[22] Muthiah R., Krishnamurthy V. and Gupta B., Rheology of HTPB Propellant: Development of Generalized Correlation and Evaluation of Pot Life, Propellants. Explos. Pyrotech., 21, 186-192, 1996
[23] Kebritchi A. and Mohamad Taghi Nejad H., A Short Review on Effect of Process Parameters on Composite Solid Propellant Pot Life
Based on Hydroxyl Terminated Polybutadiene, J. Sci. Basparesh., 2, 52-62, 2018
[23] Kebritchi A. and Mohamad Taghi Nejad H., A Short Review on Effect of Material Parameters on Composite Solid Propellant Pot Life
Based on Hydroxyl Terminated Polybutadiene, J. Sci. Basparesh., 2018
[25] Brookfield, “Brookfield Dial Viscometer Operating Instructions Manual No. M 14-023.” 2016.
[26] Vesna R. and Mirjana P., The Effect of Curing Agents on Solid Composite Rocket Propellant Characteristics, Sci.Tech. Rev., 55.1, 46-50, 2005
[27] Wingborg N., Improving the Mechanical Properties of Composite Rocket Propellants, Fiber- Polym., 14, 1-7, 2004
[28] Wingborg N., Increasing the Tensile Strength of HTPB with Different Isocyanates and Chain Extenders, Polym. Test., 21, 283-287, 2002
[29] Sekkar V., Alex A. S., Kumar V. and Bandyopadhyay G., Theoretical Evaluation of Crosslink Density of Chain Extended Polyurethane Networks Based on Hydroxyl Terminated Polybutadiene and Butanediol and Comparison with Experimental Data, J. Energ. Mater., 15, 1-10, 2017
[30] Yamazaki K. and Tokui H., The Cross-linking Reaction of the Poly butadiene Binder for Composite Propellants, Bull. Chem. Soc. Jpn., 12, 2174-2178, 1965
[31] Sekkar V., Comparison Between Crosslink Densities Derived from Stress–Strain Data and Theoretically Data Evaluated Through the Α‐Model Approach for a Polyurethane Network System Based on Hydroxyl Terminated Polybutadiene and Isophorone‐Diisocyanate, J. Appl. Polym. Sci., 2, 920-925, 2010
[32] Jain S., Sekkar V. and Krishnamurthy V., Mechanical and swelling properties of HTPB‐based copolyurethane networks, J. Appl. Polym. Sci., 9, 1515-1523, 1993
[33] Tokui H. and Iwama A., Pot Life Problem and its Measure with a Reduced Smoke Propellant Production, Propellants. Explos. Pyrotech., 3, 105-109, 1991
[34] Haska S. B., Bayramli E., Pekel F. and Oezkar S., Mechanical properties of HTPB-IPDI-based Elastomers, J. Appl. Polym. Sci., 12, 2347-2355, 1997