اثر چارچوب های فلزی- آلی MIL-53 بر عملکرد غشا شبکه ترکیبی Pebax/PEG در جداسازی CO2/CH4

نوع مقاله : پژوهشی اصیل

نویسندگان

دانشکده مهندسی شیمی، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران

چکیده
در این مطالعه به بررسی غشاهای شبکه ترکیبی سه جزئی متشکل از Pebax®1657، PEG200 و چارچوب های MIL-53(Al) در جداسازی گاز CO2 پرداخته شد و اثرات ناشی از درصدهای وزنی متفاوت PEG-200 و MIL-53(Al) در شبکه پلیمر Pebax بر ساختار، تراوایی گاز و انتخاب‌پذیری غشاها مورد بررسی قرار گرفت. جهت بررسی ساختاری، میزان بلورینگی و خواص حرارتی غشاهای ساخته شده، به ترتیب از میکروسکوپ الکترونی روبشی (SEM)، آزمون گرماسنجی روبشی تفاضلی (DSC) و آزمون گرماوزن سنجی (TGA) استفاده شد. همچنین آزمون طیف سنجی مادون قرمز (FTIR) جهت بررسی پیوندهای ایجاد شده در ساختار غشاها مورد استفاده قرار گرفت. در تصاویر میکروسکوپی، پخش مناسب ذرات در شبکه پلیمر و سطح یکپارچه غشاها قابل رویت بوده که نشان از ساختاری مناسب و تا حد امکان عاری از عیوب می باشد. نتایج آزمون‌های حرارتی حاکی از افزایش بلورینگی و دمای گذر شیشه‌ای در ازای افزودن ذرات MIL-53 بوده است. تراوایی گازهای خالص دی‌اکسید کربن و متان در دمای °C30 و در محدوده فشاری 2 تا bar 10در غشاهای Pebax خالص، Pebax/PEG و Pebax/PEG/MOF مورد اندازه‌گیری قرار گرفت. نتایج گازتراوایی نشان داد، در فشار bar 10، تراوایی گاز دی‌اکسید کربن از barrer 6/133 در غشای خالص به barrer 7/311 (به میزان 134%) در غشای حاوی 10 درصد وزنی MIL-53 افزایش یافت.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of MIL-53 metal organic frameworks on performance of Pebax/PEG mixed matrix membrane for CO2/CH4 separation

نویسندگان English

Gholamreza Alizadeh
Reza Abedini
Ahmad Rahimpour
Mina Kheirtalab
Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
چکیده English

In this study, the three phase mixed matrix membranes comprising Pebax®1657, PEG-200 and MIL-53(AL) nanoparticles were evaluated for CO2 gas separation. The effect of various PEG-200 and MIL-53(AL) concentration within the pebax polymeric matrix on the structure, gas permeability, and selectivity of the membranes was investigated. To study the cross-sectional morphology, crystallinity and thermal properties of the synthesized membranes, scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were utilized, respectively. Fourier transform infrared (FT-IR), was also carried out to identify the formation of the chemical bonds in the membrane. SEM images demonstrated a uniform cross-section and admissible dispersion of nanoparticles. The results of the thermal analyses indicated an increase in crystallinity and Tg in presence of MIL-53 particles. Permeation of pure gases (i.e., CO2, CH4) through the prepared neat Pebax®1657, the blended Pebax/PEG-200 and the Pebax/PEG-200/MIL-53(AL) mixed matrix membrane was measured at the pressure of 2–10 bar and temperature of 30 °C. The results showed that at the pressure 10 bar, the CO2 gas permeation from 133.36 barrer in pure membrane increased to 311.7 barrer (134%) in a membrane containing 10%wt MIL-53.

کلیدواژه‌ها English

mixed matrix membrane
Pebax®1657
PEG
MOF
gas separation
[1] Zhang Y, Sunarso J, Liu S, Wang R. Current status and development of membranes for CO2/CH4 separation: A review. International Journal of Greenhouse Gas Control. 2013; 12: 84-107.
[2] Freeman B, Pinnau I. Separation of gases using solubility-selective polymers. Trends in polymer science. 1997; 5:167-73.
[3] Robeson LM. Correlation of separation factor versus permeability for polymeric membranes. Journal of membrane science. 1991; 62:165-85.
[4] Goh PS, Ismail AF, Sanip SM, Ng BC, Aziz M. Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Separation and Purification Technology. 2011; 81: 243-64.
[5] Adams R, Carson C, Ward J, Tannenbaum R, Koros W. Metal organic framework mixed matrix membranes for gas separations. Microporous and Mesoporous Materials. 2010; 131: 13-20.
[6] Dorosti F, Omidkhah M, Abedini R. Fabrication and characterization of Matrimid/MIL-53 mixed matrix membrane for CO2/CH4 separation. Chemical Engineering Research and Design. 2014; 92: 2439-48.
[7] Abedini R, Omidkhah M, Dorosti F. Hydrogen separation and purification with poly (4-methyl-1-pentyne)/MIL-53 mixed matrix membrane based on reverse selectivity. International Journal of Hydrogen Energy. 2014; 39: 7897-909.
[8] Mozafari M, Abedini R, Rahimpour A. Zr-MOFs-incorporated thin film nanocomposite Pebax 1657 membranes dip-coated on polymethylpentyne layer for efficient separation of CO2/CH4. Journal of Materials Chemistry A. 2018; 6: 12380-92.
[9] Perez EV, Balkus Jr KJ, Ferraris JP, Musselman IH. Mixed-matrix membranes containing MOF-5 for gas separations. Journal of Membrane Science. 2009; 328: 165-73.
[10] Li Z, Wu YN, Li J, Zhang Y, Zou X, Li F. The Metal–Organic Framework MIL‐53 (Al) Constructed from Multiple Metal Sources: Alumina, Aluminum Hydroxide, and Boehmite. Chemistry–A European Journal. 2015; 21: 6913-6920.
[11] Boutin A, Coudert FX, Springuel-Huet MA, Neimark AV, Férey G, Fuchs AH. The behavior of flexible MIL-53 (Al) upon CH4 and CO2 adsorption. The Journal of Physical Chemistry C. 2010; 114: 22237-22244.
[12] Alhamami M, Doan H, Cheng CH. A review on breathing behaviors of metal-organic-frameworks (MOFs) for gas adsorption. Materials. 2014; 7: 3198-250.
[13] Lin H, Freeman BD. Material selection guidelines for membranes that remove CO2 from gas mixtures. Journal of Molecular Structure. 2005; 739: 57-74.
[14] Xiang L, Pan Y, Zeng G, Jiang J, Chen J, Wang C. Preparation of poly (ether-block-amide)/attapulgite mixed matrix membranes for CO2/N2 separation. Journal of Membrane Science. 2016; 500: 66-75.
[15] Asghari M, Mahmudi A, Zargar V, Khanbabaei G. Effect of polyethyleneglycol on CH4 permeation through poly (amide-b-ethylene oxide)-based nanocomposite membranes. Applied Surface Science. 2014; 318: 218-22.
[16] Yang ZZ, Song QW, He LN. Capture and utilization of carbon dioxide with polyethylene glycol. Springer Science & Business Media; 2012 Aug 10.
[17] Murali RS, Sridhar S, Sankarshana T, Ravikumar YV. Gas permeation behavior of Pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes. Industrial & Engineering Chemistry Research. 2010; 49: 6530-8.
[18] Dai Y, Ruan X, Yan Z, Yang K, Yu M, Li H, Zhao W, He G. Imidazole functionalized graphene oxide/PEBAX mixed matrix membranes for efficient CO2 capture. Separation and Purification Technology. 2016; 166: 171-80.
[19] Azizi N, Mohammadi T, Behbahani RM. Synthesis of a PEBAX-1074/ZnO nanocomposite membrane with improved CO2 separation performance. Journal of energy chemistry. 2017; 26: 454-65.
[20] Reijerkerk SR, Knoef MH, Nijmeijer K, Wessling M. Poly (ethylene glycol) and poly (dimethyl siloxane): Combining their advantages into efficient CO2 gas separation membranes. Journal of membrane science. 2010; 352: 126-35.
[21] Rabiee H, Soltanieh M, Mousavi SA, Ghadimi A. Improvement in CO2/H2 separation by fabrication of poly (ether-b-amide6)/glycerol triacetate gel membranes. Journal of Membrane Science. 2014; 469: 43-58.
[22] Car A, Stropnik C, Yave W, Peinemann KV. PEG modified poly (amide-b-ethylene oxide) membranes for CO2 separation. Journal of Membrane Science. 2008; 307: 88-95.
[23] Moore TT, Koros WJ. Non-ideal effects in organic–inorganic materials for gas separation membranes. Journal of Molecular Structure. 2005; 739: 87-98.
[24] Meshkat S, Kaliaguine S, Rodrigue D. Mixed matrix membranes based on amine and non-amine MIL-53 (Al) in Pebax® MH-1657 for CO2 separation. Separation and Purification Technology. 2018; 200: 177-90.
[25] Rezakazemi M, Amooghin AE, Montazer-Rahmati MM, Ismail AF, Matsuura T. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Progress in Polymer Science. 2014; 39: 817-61.
[26] Kawashima Y, Sato A, Orita Y, Hirota E. Intermolecular Interaction between CO or CO2 and Ethylene Oxide or Ethylene Sulfide in a Complex, Investigated by Fourier Transform Microwave Spectroscopy and Ab Initio Calculations. The Journal of Physical Chemistry A. 2012; 116: 1224-36.
[27] Finsy V, Ma L, Alaerts L, De Vos DE, Baron GV, Denayer JF. Separation of CO2/CH4 mixtures with the MIL-53 (Al) metal–organic framework. Microporous and Mesoporous Materials. 2009; 120: 221-7.
[28] Stavitski E, Pidko EA, Couck S, Remy T, Hensen EJ, Weckhuysen BM, Denayer J, Gascon J, Kapteijn F. Complexity behind CO2 capture on NH2-MIL-53 (Al). Langmuir. 2011; 2: 3970-6.
[29] Shin JE, Lee SK, Cho YH, Park HB. Effect of PEG-MEA and Graphene Oxide Additives on the Performance of Pebax® 1657 Mixed Matrix Membranes for CO2 Separation. Journal of Membrane Science. 2019;572: 300-308.
[30] Hou J, Li X, Guo R, Zhang J, Wang Z. Mixed matrix membranes with fast and selective transport pathways for efficient CO2 separation. Nanotechnology, 2018; 29: 125706-125714.
[31] Jazebizadeh MH, Khazraei S. Investigation of methane and carbon dioxide gases permeability through PEBAX/PEG/ZnO nanoparticle mixed matrix membrane. Silicon. 2017; 9: 775-784.
[32] Mubashir M, Fong YY, Keong L, Leng T, Jusoh N. Efficient CO2/N2 and CO2/CH4 separation using NH2-MIL-53 (Al)/cellulose acetate (CA) mixed matrix membranes. Separation and Purification Technology. 2018; 199: 140-151.
[33] Sabetghadam A, Liu X, Orsi A, Lozinska M, Johnson T, Jansen K, Wright P, Carta M, Mckeown N, Kapteijn F, Gacson J, Towards High Performance Metal–Organic Framework–Microporous Polymer Mixed Matrix Membranes: Addressing Compatibility and Limiting Aging by Polymer Doping. Chemistry–A European Journal. 2018; 24: 12796-12800.
[34] Rodrigues MA, Riberio J, Costa E, Miranda J, Ferraz H. Nanostructured membranes containing UiO-66 (Zr) and MIL-101 (Cr) for O2/N2 and CO2/N2 separation. Separation and Purification Technology. 2018; 192: 491-500.
[35] Hamrahi Zو Kargari َ. Modification of polycarbonate membrane by polyethylene glycol for CO2/CH4 separation. Separation Science and Technology. 2017; 52: 544-556.