مروری بر هیدروژل‌های نانوکامپوزیتی: رئولوژی، ریخت‌شناسی و کاربردها

نوع مقاله : مروری تحلیلی

نویسندگان

1 پژوهشگاه شیمی و مهندسی شیمی ایران

2 هیات علمی پژوهشکده مهندسی نفت، پژوهشگاه شیمی و مهندسی شیمی ایران

چکیده
موضوع تحقیق: وجود ضعف در استحکام مکانیکی و عدم پایداری حرارتی هیدروژل­­ها، سبب ایجاد محدودیت در کاربرد گسترده­ی آن­ها در صنایع مختلف شده است. نیاز روز افزون صنعت برای رفع این مسئله و دستیابی به هیدروژل­هایی با خواص بهبود یافته، منجر به طراحی و تولید هیدروژل­های نانوکامپوزیتی شده است.

روش تحقیق: شبکه­ی پلیمری هیدروژل­های نانوکامپوزیتی در مقایسه با هیدروژل­های مرسوم، دارای خواص ارتجاعی و رئولوژیکی بهبود یافته است. از دیگر نکاتی که بر اهمیت مطالعات ساختاری هیدروژل­های نانوکامپوزیتی می­افزاید، استحکام بالای این مواد در مقابل اعمال نیروی خارجی و همچنین حفظ ساختار آن در برابر افزایش دما است. در ایــن راســتا نوع و مقادیر نانوماده، روش ساخت و شکل­گیری شبکه­­ی هیدروژل، نقش قابل توجهی در بهبــود خــواص فیزیکــی، شــیمیایی و زیســتی هیدروژل­ها دارد و البته پارامترهای ذکر شده وابسته به کاربرد هیدروژل­های نانوکامپوزیت، متفاوت خواهد بود. که همین امر لزوم تولید هیدروژل­های نانوکامپوزیت خیاط دوز(tailor-made) را نشان می­دهد. بنابراین آشنایی با گستره­ی نانومواد، روش ساخت و شناسایی محصول در کنار اطلاعات کافی در مورد کاربرد این مواد نقش مهمی در تضمین موفقیت این مواد خواهد داشت که این امر مستلزم پژوهش و مطالعات کتابخانه­ای جامع و اشراف به فرایندهای پلیمریزاسیون، علوم ریخت­شناسی و رئولوژی خواهد بود.

نتایج اصلی: در این مقاله مروری، به پیشرفت­های علمی در زمینه­ی هیدروژل­های نانوکامپوزیتی با تمرکز بر انواع آن مبنی بر نوع نانوذرات، ویژگی­های آن، روش­های ساخت، روش­های شناسایی با دیدگاهی نوین در زمینه­های رئولوژی، آنالیز حرارتی و ریخت­شناسی پرداخته شده است و در نهایت قابلیت کاربرد این مواد در قالب یک جدول جامع در زمینه­های متفاوتی چون مهندسی بافت، ازدیاد برداشت نفت، کشاورزی و... گردآوری شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

A review on Nanocomposite Hydrogels: Rheology, Morphology, and Applications

نویسندگان English

Fatemeh Karchoubi 1
Mahsa baghban salehi 2
Hossein Pahlevani 1
1 Chemistry & Chemical Engineering Research Center of Iran (CCERCI),
2 Assistant Professor of Petroleum Engineering Department, Chemistry & Chemical Engineering Research Center of Iran,
چکیده English

Research Subject: Poor mechanical strengths and lack of thermal stabilities of hydrogels confine their extensive practical applications in many areas. The growing scientific need for solving this problem and achievement to the hydrogels with improved properties has led to the design and production of the nanocomposite hydrogels.

Research Approach: The polymeric networks of nanocomposite hydrogels compared to the ordinary hydrogels have improved elasticity and rheological properties. Other points that increase the importance of structural studies of nanocomposite hydrogels are the high strength of these materials versus the application of external forces, as well as maintaining its structure against increasing of temperatures. In this regard, the type and amounts of nanomaterial, the preparation method and formation of hydrogel network have a significant role in improving the physical, chemical and biological properties of hydrogels, and, it must be noted that these parameters will depend on the application of nanocomposite hydrogels. This also highlights the need for the production of nanocomposite tailored hydrogels. Therefore, orientation of the range of nanomaterials, the preparation method and product identification, along with sufficient information on the application of these materials, might have an important role in ensuring the success of these materials, requiring comprehensive library research and studies on polymerization processes, morphology and rheology.

Main Results: In this review article, the scientific advances in the field of nanocomposite hydrogels, focusing on its types based on the type of nanoparticles, its properties, preparation methods, identification methods with a new perspective on rheology, thermal analysis and morphology is investigated. Finally, the applicability of these materials is collected in a comprehensive table in various fields such as tissue engineering, enhanced oil recovery, agriculture, and etc…

کلیدواژه‌ها English

Nanocomposite hydrogel
Nanoparticles
Mechanical strength
Thermal stability
morphology
Rheology
G.R. Mahdavinia, M.J. Zohuriaan-Mehr, A. Pourjavadi, Modified chitosan III, superabsorbency, salt- and pH-sensitivity of smart ampholytic hydrogels from chitosan-g-PAN, Polym. Adv. Technol. 15 (2004) 173–180. doi:10.1002/pat.408.
[2] E. Gil, S. Hudson, Stimuli-reponsive polymers and their bioconjugates, Prog. Polym. Sci. 29 (2004) 1173–1222. doi:10.1016/j.progpolymsci.2004.08.003.
[3] Ma. Baghban Salehi, D. Ehsani Sohi, M. Otadi, M. Abedi lengi, Superabsorbent Sulfonated Polyacrylamide/Aluminum Nitrate Hydrogel: Swelling, Mechanical, Thermal and Structural Properties, Iran J Polym Sci Technol. (2017). doi:10.22063/jipst.2017.1514.
[4] M. Sirousazar, M. Kokabi, Intelligent Nanocomposite Hydrogels, in: A. Tiwari, A.K. Mishra, H. Kobayashi, A.P.F. Turner (Eds.), Intell. Nanomater., John Wiley & Sons, Inc., Hoboken, NJ, USA, 2012: pp. 487–531. doi:10.1002/9781118311974.ch12.
[5] H. Zhang, X. Wang, H. Huang, B. Yang, C. Wang, H. Sun, Nanocomposite interpenetrating hydrogels with high toughness and good self-recovery, Colloid Polym. Sci. 297 (2019) 821–830. doi:10.1007/s00396-019-04512-7.
[6] Z. Du, Y. Hu, X. Gu, M. Hu, C. Wang, Poly(acrylamide) microgel-reinforced poly(acrylamide)/hectorite nanocomposite hydrogels, Colloids Surf. Physicochem. Eng. Asp. 489 (2016) 1–8. doi:10.1016/j.colsurfa.2015.09.039.
[7] J.P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Double-Network Hydrogels with Extremely High Mechanical Strength, Adv. Mater. 15 (2003) 1155–1158. doi:10.1002/adma.200304907.
[8] Y. Okumura, K. Ito, The Polyrotaxane Gel: A Topological Gel by Figure-of-Eight Cross-links, (n.d.) 3.
[9] K. Haraguchi, T. Takehisa, S. Fan, Effects of Clay Content on the Properties of Nanocomposite Hydrogels Composed of Poly( N -isopropylacrylamide) and Clay, Macromolecules. 35 (2002) 10162–10171. doi:10.1021/ma021301r.
[10] K. Haraguchi, T. Takehisa, Nanocomposite Hydrogels: A Unique Organic-Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/De-swelling Properties, Adv Mater. (2002) 5.
[11] Y. Deng, J. Liu, J. Wang, L. Liu, W. Li, H. Tian, X. Zhang, Z. Xie, Y. Geng, F. Wang, Dithienocarbazole and Isoindigo based Amorphous Low Bandgap Conjugated Polymers for Efficient Polymer Solar Cells, Adv. Mater. 26 (2014) 471–476. doi:10.1002/adma.201303586.
[12] A.M. Dumitrescu, T. Slatineanu, A. Poiata, A.R. Iordan, C. Mihailescu, M.N. Palamaru, Advanced composite materials based on hydrogels and ferrites for potential biomedical applications, Colloids Surf. Physicochem. Eng. Asp. 455 (2014) 185–194. doi:10.1016/j.colsurfa.2014.04.055.
[13] H. Shin, B.D. Olsen, A. Khademhosseini, Gellan gum microgel-reinforced cell-laden gelatin hydrogels, J Mater Chem B. 2 (2014) 2508–2516. doi:10.1039/C3TB20984A.
[14] C. Zheng, Z. Huang, Microgel reinforced composite hydrogels with pH-responsive, self-healing properties, Colloids Surf. Physicochem. Eng. Asp. 468 (2015) 327–332. doi:10.1016/j.colsurfa.2014.12.060.
[15] I.M. Daniel, O. Ishai, Engineering mechanics of composite materials, 2nd ed, Oxford University Press, New York, 2006.
[16] A.K. Kaw, Mechanics of composite materials, 2nd ed, Taylor & Francis, Boca Raton, FL, 2006.
[17] E.Y. Robinson, ANALYSIS AND PERFORMANCE OF FIBER COMPOSITES Second Edition B.D. Agrawal and L.J. Broutman A Wiley-Interscience Publication John Wiley and Sons, Inc., New York 449 pages, hard cover, 1990., Mater. Manuf. Process. 8 (1993) 375–379. doi:10.1080/10426919308934840.
[18] A.K. Gaharwar, N.A. Peppas, A. Khademhosseini, Nanocomposite hydrogels for biomedical applications: Nanocomposite Hydrogels, Biotechnol. Bioeng. 111 (2014) 441–453. doi:10.1002/bit.25160.
[19] E. Thostenson, C. Li, T. Chou, Nanocomposites in context, Compos. Sci. Technol. 65 (2005) 491–516. doi:10.1016/j.compscitech.2004.11.003.
[20] D.F. Argenta, T.C. dos Santos, A.M. Campos, T. Caon, Hydrogel Nanocomposite Systems, in: Nanocarriers Drug Deliv., Elsevier, 2019: pp. 81–131. doi:10.1016/B978-0-12-814033-8.00003-5.
[21] K. Haraguchi, Nanocomposite hydrogels, Curr. Opin. Solid State Mater. Sci. 11 (2007) 47–54. doi:10.1016/j.cossms.2008.05.001.
[22] A. Okada, A. Usuki, Twenty Years of Polymer-Clay Nanocomposites, Macromol. Mater. Eng. 291 (2006) 1449–1476. doi:10.1002/mame.200600260.
[23] A. Radosavljevic (Krkljes, J. Spasojević, J. Krstic, Z. Kačarević-Popović, Nanocomposite Hydrogels Obtained by Gamma Irradiation, in: 2018: pp. 1–23. doi:10.1007/978-3-319-76573-0_21-1.
[24] A. Hebeish, S. Sharaf, Novel nanocomposite hydrogel for wound dressing and other medical applications, RSC Adv. 5 (2015) 103036–103046. doi:10.1039/C5RA07076G.
[25] K. Xu, J. Wang, S. Xiang, Q. Chen, Y. Yue, X. Su, C. Song, P. Wang, Polyampholytes superabsorbent nanocomposites with excellent gel strength, Compos. Sci. Technol. 67 (2007) 3480–3486. doi:10.1016/j.compscitech.2007.02.009.
[26] M. Rahmat, P. Hubert, Carbon nanotube–polymer interactions in nanocomposites: A review, Compos. Sci. Technol. 72 (2011) 72–84. doi:10.1016/j.compscitech.2011.10.002.
[27] S. Sinha Ray, M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing, Prog. Polym. Sci. 28 (2003) 1539–1641. doi:10.1016/j.progpolymsci.2003.08.002.
[28] S. Yang, J. Wang, H. Tan, F. Zeng, C. Liu, Mechanically robust PEGDA–MSNs-OH nanocomposite hydrogel with hierarchical meso-macroporous structure for tissue engineering, Soft Matter. 8 (2012) 8981. doi:10.1039/c2sm25123j.
[29] S. Rafieian, H. Mirzadeh, H. Mahdavi, M.E. Masoumi, A review on nanocomposite hydrogels and their biomedical applications, Sci. Eng. Compos. Mater. 26 (2019) 154–174. doi:10.1515/secm-2017-0161.
[30] J.R. Potts, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, Graphene-based polymer nanocomposites, Polymer. 52 (2011) 5–25. doi:10.1016/j.polymer.2010.11.042.
[31] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and Graphene Oxide: Synthesis, Properties, and Applications, Adv. Mater. 22 (2010) 3906–3924. doi:10.1002/adma.201001068.
[32] G. Sharma, B. Thakur, Mu. Naushad, A. Kumar, F.J. Stadler, S.M. Alfadul, G.T. Mola, Applications of nanocomposite hydrogels for biomedical engineering and environmental protection, Environ. Chem. Lett. 16 (2018) 113–146. doi:10.1007/s10311-017-0671-x.
[33] C. Zareie, A.R. Bahramian, M.V. Sefti, M.B. Salehi, Network-gel strength relationship and performance improvement of polyacrylamide hydrogel using nano-silica; with regards to application in oil wells conditions, J. Mol. Liq. 278 (2019) 512–520. doi:10.1016/j.molliq.2019.01.089.
[34] C. Cha, S.R. Shin, N. Annabi, M.R. Dokmeci, A. Khademhosseini, Carbon-Based Nanomaterials: Multifunctional Materials for Biomedical Engineering, ACS Nano. 7 (2013) 2891–2897. doi:10.1021/nn401196a.
[35] S. Mohammadi, M. Vafaie Sefti, M. Baghban Salehi, A. Mousavi Moghadam, S. Rajaee, H. Naderi, Hydrogel swelling properties: comparison between conventional and nanocomposite hydrogels for water shutoff treatment: Comparing Conventional hydrogels with Nanocomposite, Asia-Pac. J. Chem. Eng. 10 (2015) 743–753. doi:10.1002/apj.1912.
[36] S.J.V. Frankland, A. Caglar, D.W. Brenner, M. Griebel, Molecular Simulation of the Influence of Chemical Cross-Links on the Shear Strength of Carbon Nanotube-Polymer Interfaces, Am. Chem. Soc. (2002) 3046–3048. doi:https://doi-org.ezp4.semantak.com/10.1021/jp015591+.
[37] J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets, Nature. 446 (2007) 60–63. doi:10.1038/nature05545.
[38] J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets, Nature. 446 (2007) 60.
[39] S.K. Krishnan, E. Singh, P. Singh, M. Meyyappan, H.S. Nalwa, A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors, RSC Adv. 9 (2019) 8778–8881. doi:10.1039/C8RA09577A.
[40] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science. 321 (2008) 385–388. doi:10.1126/science.1157996.
[41] S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, A.K. Geim, Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer, Phys. Rev. Lett. 100 (2008) 016602. doi:10.1103/PhysRevLett.100.016602.
[42] P. Avouris, F. Xia, Graphene applications in electronics and photonics, MRS Bull. 37 (2012) 1225–1234. doi:10.1557/mrs.2012.206.
[43] O. Czakkel, B. Berke, K. László, Effect of graphene-derivatives on the responsivity of PNIPAM-based thermosensitive nanocomposites – A review, Eur. Polym. J. 116 (2019) 106–116. doi:10.1016/j.eurpolymj.2019.04.004.
[44] S. Pei, H.-M. Cheng, The reduction of graphene oxide, Carbon. 50 (2012) 3210–3228. doi:10.1016/j.carbon.2011.11.010.
[45] M.J. Fernández-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, J.M.D. Tascón, Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions, J. Phys. Chem. C. 114 (2010) 6426–6432. doi:10.1021/jp100603h.
[46] J. Du, P. Guo, S. Xu, C. Zhang, S. Feng, L. Cao, R. Wu, J. Wang, 21 - Organic/inorganic nanocomposite hydrogels, in: Y. Dong, R. Umer, A.K.-T. Lau (Eds.), Fill. Reinf. Adv. Nanocomposites, Woodhead Publishing, 2015: pp. 523–548. doi:10.1016/B978-0-08-100079-3.00021-1.
[47] F. Lamberti, S. Giulitti, M. Giomo, N. Elvassore, Biosensing with electroconductive biomimetic soft materials, J. Mater. Chem. B. 1 (2013) 5083–5091. doi:10.1039/C3TB20666A.
[48] A.A. Adewunmi, S. Ismail, A.S. Sultan, Carbon Nanotubes (CNTs) Nanocomposite Hydrogels Developed for Various Applications: A Critical Review, J. Inorg. Organomet. Polym. Mater. 26 (2016) 717–737. doi:10.1007/s10904-016-0379-6.
[49] Y. Samchenko, Z. Ulberg, O. Korotych, Multipurpose smart hydrogel systems, Adv. Colloid Interface Sci. 168 (2011) 247–262. doi:10.1016/j.cis.2011.06.005.
[50] Y. Huang, Y. Zheng, W. Song, Y. Ma, J. Wu, L. Fan, Poly(vinyl pyrrolidone) wrapped multi-walled carbon nanotube/poly(vinyl alcohol) composite hydrogels, Compos. Part Appl. Sci. Manuf. 42 (2011) 1398–1405. doi:10.1016/j.compositesa.2011.06.003.
[51] S. Chatterjee, M.W. Lee, S.H. Woo, Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes, Bioresour. Technol. 101 (2010) 1800–1806. doi:10.1016/j.biortech.2009.10.051.
[52] N. Jin, E.A. Morin, D.M. Henn, Y. Cao, J.W. Woodcock, S. Tang, W. He, B. Zhao, Agarose Hydrogels Embedded with pH-Responsive Diblock Copolymer Micelles for Triggered Release of Substances, Biomacromolecules. 14 (2013) 2713–2723. doi:10.1021/bm4005639.
[53] M.-T. Popescu, S. Mourtas, G. Pampalakis, S.G. Antimisiaris, C. Tsitsilianis, pH-Responsive Hydrogel/Liposome Soft Nanocomposites For Tuning Drug Release, Biomacromolecules. 12 (2011) 3023–3030. doi:10.1021/bm2006483.
[54] L. Goetz, M. Foston, A.P. Mathew, K. Oksman, A.J. Ragauskas, Poly(methyl vinyl ether- co -maleic acid)−Polyethylene Glycol Nanocomposites Cross-Linked In Situ with Cellulose Nanowhiskers, Biomacromolecules. 11 (2010) 2660–2666. doi:10.1021/bm1006695.
[55] J.K. Carrow, A.K. Gaharwar, Bioinspired Polymeric Nanocomposites for Regenerative Medicine, Macromol. Chem. Phys. 216 (2015) 248–264. doi:10.1002/macp.201400427.
[56] S.H.M. Söntjens, D.L. Nettles, M.A. Carnahan, L.A. Setton, M.W. Grinstaff, Biodendrimer-Based Hydrogel Scaffolds for Cartilage Tissue Repair, Biomacromolecules. 7 (2006) 310–316. doi:10.1021/bm050663e.
[57] R. Conte, A. De Luise, A. Valentino, F. Di Cristo, O. Petillo, F. Riccitiello, A. Di Salle, A. Calarco, G. Peluso, Hydrogel Nanocomposite Systems, in: Nanocarriers Drug Deliv., Elsevier, 2019: pp. 319–349. doi:10.1016/B978-0-12-814033-8.00010-2.
[58] P. Schexnailder, G. Schmidt, Nanocomposite polymer hydrogels, Colloid Polym. Sci. 287 (2009) 1–11. doi:10.1007/s00396-008-1949-0.
[59] A.K. Gaharwar, N.A. Peppas, A. Khademhosseini, Nanocomposite Hydrogels for Biomedical Applications, Biotechnol. Bioeng. 111 (2014) 13.
[60] T. Wang, Z. Dai, J. Kang, F. Fu, T. Zhang, S. Wang, A TiO 2 nanocomposite hydrogel for Hydroponic plants in efficient water improvement, Mater. Chem. Phys. 215 (2018) 242–250. doi:10.1016/j.matchemphys.2018.05.042.
[61] N.S. Satarkar, D. Biswal, J.Z. Hilt, Hydrogel nanocomposites: a review of applications as remote controlled biomaterials, Soft Matter. 6 (2010) 2364. doi:10.1039/b925218p.
[62] L. Goetz, M. Foston, A.P. Mathew, K. Oksman, A.J. Ragauskas, Poly(methyl vinyl ether-co-maleic acid)−Polyethylene Glycol Nanocomposites Cross-Linked In Situ with Cellulose Nanowhiskers, Biomacromolecules. 11 (2010) 2660–2666. doi:10.1021/bm1006695.
[63] A.K. Gaharwar, S.A. Dammu, J.M. Canter, C.-J. Wu, G. Schmidt, Highly Extensible, Tough, and Elastomeric Nanocomposite Hydrogels from Poly(ethylene glycol) and Hydroxyapatite Nanoparticles, Biomacromolecules. 12 (2011) 1641–1650. doi:10.1021/bm200027z.
[64] I.-Y. Jeon, J.-B. Baek, Nanocomposites Derived from Polymers and Inorganic Nanoparticles, Materials. 3 (2010) 3654–3674. doi:10.3390/ma3063654.
[65] Y.-H. Yu, C.-C. Jen, H.-Y. Huang, P.-C. Wu, C.-C. Huang, J.-M. Yeh, Preparation and properties of heterocyclically conjugated poly(3-hexylthiophene)-clay nanocomposite materials, J. Appl. Polym. Sci. 91 (2004) 3438–3446. doi:10.1002/app.13457.
[66] A. Olad, A. Rashidzadeh, Preparation and anticorrosive properties of PANI/Na-MMT and PANI/O-MMT nanocomposites, Prog. Org. Coat. 62 (2008) 293–298. doi:10.1016/j.porgcoat.2008.01.007.
[67] J. Loste, J.-M. Lopez-Cuesta, L. Billon, H. Garay, M. Save, Transparent polymer nanocomposites: An overview on their synthesis and advanced properties, Prog. Polym. Sci. 89 (2019) 133–158. doi:10.1016/j.progpolymsci.2018.10.003.
[68] K. Haraguchi, H.-J. Li, Mechanical Properties and Structure of Polymer−Clay Nanocomposite Gels with High Clay Content, Macromolecules. 39 (2006) 1898–1905. doi:10.1021/ma052468y.
[69] K. Haraguchi, R. Farnworth, A. Ohbayashi, T. Takehisa, Compositional Effects on Mechanical Properties of Nanocomposite Hydrogels Composed of Poly( N , N -dimethylacrylamide) and Clay, Macromolecules. 36 (2003) 5732–5741. doi:10.1021/ma034366i.
[70] D.W. Chae, B.C. Kim, Characterization on polystyrene/zinc oxide nanocomposites prepared from solution mixing, Polym. Adv. Technol. 16 (2005) 846–850. doi:10.1002/pat.673.
[71] M.I. Sarwar, S. Zulfiqar, Z. Ahmad, Polyamide–silica nanocomposites: mechanical, morphological and thermomechanical investigations, Polym. Int. 57 (2008) 292–296. doi:10.1002/pi.2343.
[72] R. Sengupta, A. Bandyopadhyay, S. Sabharwal, T.K. Chaki, A.K. Bhowmick, Polyamide-6,6/in situ silica hybrid nanocomposites by sol–gel technique: synthesis, characterization and properties, Polymer. 46 (2005) 3343–3354. doi:10.1016/j.polymer.2005.02.104.
[73] P.K. Khanna, N. Singh, Light emitting CdS quantum dots in PMMA: Synthesis and optical studies, J. Lumin. 127 (2007) 474–482. doi:10.1016/j.jlumin.2007.02.037.
[74] S.-H. Hsiao, G.-S. Liou, L.-M. Chang, Synthesis and properties of organosoluble polyimide/clay hybrids, J. Appl. Polym. Sci. 80 (2001) 2067–2072. doi:10.1002/app.1306.
[75] R. Singh, V. Mahto, Synthesis, characterization and evaluation of polyacrylamide graft starch/clay nanocomposite hydrogel system for enhanced oil recovery, Pet. Sci. 14 (2017) 765–779. doi:10.1007/s12182-017-0185-y.
[76] J. Zhou, G. Wang, L. Zou, L. Tang, M. Marquez, Z. Hu, Viscoelastic Behavior and In Vivo Release Study of Microgel Dispersions with Inverse Thermoreversible Gelation, Biomacromolecules. 9 (2008) 142–148. doi:10.1021/bm700918d.
[77] F. Ganji, E. Vasheghani-Farahani, Hydrogels in Controlled Drug Delivery Systems, (n.d.) 26.
[78] M.B. Salehi, E. Vasheghani-Farahani, M.V. Sefti, A.M. Moghadam, H. Naderi, Rheological and transport properties of sulfonated polyacrylamide hydrogels for water shutoff in porous media, Polym. Adv. Technol. 25 (2014) 396–405.
[79] B. Baroli, Hydrogels for Tissue Engineering and Delivery of Tissue-Inducing Substances, J. Pharm. Sci. 96 (2007) 2197–2223. doi:10.1002/jps.20873.
[80] A.M. Moghadam, M.V. Sefti, M.B. Salehi, A.D. Koohi, M. Sheykhan, Effect of Nanoclay along with Other Effective Parameters on Gelation Time of Hydro Polymer Gels, J. Macromol. Sci. Part B. 51 (2012) 2015–2025. doi:10.1080/00222348.2012.661667.
[81] K. Swaroop, H.M. Somashekarappa, Swelling characteristics and drug release kinetics of Ag/PVA hydrogel nanocomposites, in: Bhubaneswar, Odisha, India, 2017: p. 140025. doi:10.1063/1.4980807.
[82] A. Karimi, W.M.A. Wan Daud, Comparison the properties of PVA/Na + -MMT nanocomposite hydrogels prepared by physical and physicochemical crosslinking, Polym. Compos. 37 (2016) 897–906. doi:10.1002/pc.23248.
[83] P. Dutta, N.N. Dass, N.S. Sarma, Stimuli responsive carbon nanocomposite hydrogels with efficient conducting properties as a precursor to bioelectronics, React. Funct. Polym. 90 (2015) 25–35. doi:10.1016/j.reactfunctpolym.2015.03.009.
[84] A. Kikuchi, T. Okano, Intelligent thermoresponsive polymeric stationary phases for aqueous chromatography of biological compounds, Prog. Polym. Sci. 27 (2002) 1165–1193. doi:10.1016/S0079-6700(02)00013-8.
[85] M.A.C. Stuart, W.T.S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G.B. Sukhorukov, I. Szleifer, V.V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, S. Minko, Emerging applications of stimuli-responsive polymer materials, Nat. Mater. 9 (2010) 101–113. doi:10.1038/nmat2614.
[86] S. Kujala, J. Ryhänen, T. Jämsä, A. Danilov, J. Saaranen, A. Pramilad, J. Tuukkanen, Stimuli-responsive polymers and biomedical applications, (n.d.) 1.
[87] G. Filipcsei, J. Feher, M. Zrınyi, Electric field sensitive neutral polymer gels, J. Mol. Struct. (2000) 9.
[88] W.-F. Lee, Y.-C. Chen, Effect of bentonite on the physical properties and drug-release behavior of poly(AA-co-PEGMEA)/bentonite nanocomposite hydrogels for mucoadhesive, J. Appl. Polym. Sci. 91 (2004) 2934–2941. doi:10.1002/app.13499.
[89] F. Ullah, M.B.H. Othman, F. Javed, Z. Ahmad, H.Md. Akil, Classification, processing and application of hydrogels: A review, Mater. Sci. Eng. C. 57 (2015) 414–433. doi:10.1016/j.msec.2015.07.053.
[90] P. Li, N.H. Kim, Siddaramaiah, J.H. Lee, Swelling behavior of polyacrylamide/laponite clay nanocomposite hydrogels: pH-sensitive property, Compos. Part B Eng. 40 (2009) 275–283. doi:10.1016/j.compositesb.2009.01.001.
[91] B.D. Ratner, ed., Biomaterials science: an introduction to materials in medicine, 2nd ed, Elsevier Academic Press, Amsterdam ; Boston, 2004.
[92] N.A. Peppas, J.Z. Hilt, A. Khademhosseini, R. Langer, Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology, Adv. Mater. 18 (2006) 1345–1360. doi:10.1002/adma.200501612.
[93] M.F. Akhtar, M. Hanif, N.M. Ranjha, Methods of synthesis of hydrogels … A review, Saudi Pharm. J. 24 (2016) 554–559. doi:10.1016/j.jsps.2015.03.022.
[94] A. Memic, H.A. Alhadrami, M.A. Hussain, M. Aldhahri, F. Al Nowaiser, F. Al-Hazmi, R. Oklu, A. Khademhosseini, Hydrogels 2.0: improved properties with nanomaterial composites for biomedical applications, Biomed. Mater. 11 (2015) 014104. doi:10.1088/1748-6041/11/1/014104.
[95] W.-F. Su, Principles of Polymer Design and Synthesis, 2013. doi:10.1007/978-3-642-38730-2.
[96] K. Haraguchi, H.-J. Li, Control of the Coil-to-Globule Transition and Ultrahigh Mechanical Properties of PNIPA in Nanocomposite Hydrogels, Angew. Chem. Int. Ed. 44 (2005) 6500–6504. doi:10.1002/anie.200502004.
[97] Hydrogels, Cross linking, Gel, Polymer, (n.d.) 8.
[98] R. Panahi, M. Baghban-Salehi, Protein-Based Hydrogels, in: Md.I.H. Mondal (Ed.), Cellul.-Based Superabsorbent Hydrogels, Springer International Publishing, Cham, 2018: pp. 1–40. doi:10.1007/978-3-319-76573-0_52-1.
[99] S. Rahimi, M. Habibian, M.B. Salehi, Effect of polymer molar mass and montmorillonite content on polymer flooding using a glass micromodel, Appl. Clay Sci. 163 (2018) 186–195. doi:10.1016/j.clay.2018.07.029.
[100] C. Zareie, M.V. Sefti, A.R. Bahramian, M.B. Salehi, A polyacrylamide hydrogel for application at high temperature and salinity tolerance in temporary well plugging, Iran. Polym. J. 27 (2018) 577–587. doi:10.1007/s13726-018-0634-5.
[101] C.-F. Kuan, C.-H. Chen, H.-C. Kuan, K.-C. Lin, C.-L. Chiang, H.-C. Peng, Multi-walled carbon nanotube reinforced poly (l-lactic acid) nanocomposites enhanced by water-crosslinking reaction, J. Phys. Chem. Solids. 69 (2008) 1399–1402. doi:10.1016/j.jpcs.2007.10.061.
[102] A. Mousavi Moghadam, M. Baghban Salehi, Enhancing hydrocarbon productivity via wettability alteration: a review on the application of nanoparticles, Rev. Chem. Eng. 35 (2019) 531–563. doi:10.1515/revce-2017-0105.
[103] S. Rajaee, M. Baghban Salehi, A. Mousavi Moghadam, M. Vafaie Sefti, S. Mohammadi, Nanocomposite hydrogels adsorption: Experimental investigation and performance on sandstone core, J. Pet. Sci. Eng. 159 (2017) 934–941. doi:10.1016/j.petrol.2017.08.034.
[104] A.M. Salgueiro, A.L. Daniel-da-Silva, S. Fateixa, T. Trindade, κ-Carrageenan hydrogel nanocomposites with release behavior mediated by morphological distinct Au nanofillers, Carbohydr. Polym. 91 (2013) 100–109. doi:10.1016/j.carbpol.2012.08.004.
[105] S. Scognamillo, V. Alzari, D. Nuvoli, J. Illescas, S. Marceddu, A. Mariani, Thermoresponsive super water absorbent hydrogels prepared by frontal polymerization of N-isopropyl acrylamide and 3-sulfopropyl acrylate potassium salt, J. Polym. Sci. Part Polym. Chem. 49 (2011) 1228–1234. doi:10.1002/pola.24542.
[106] Y.D. Cerda-Sumbarda, I. Zapata-Gonzalez, A. Licea-Claverie, A. Zizumbo-Lopez, L. F. Ramos-de Valle, A. Espinoza-Martínez, Poly(hexylacrylate) Core -poly(ethyleneglycol methacrylate) Shell nanogels as fillers for poly(2-hydroxyethyl methacrylate) nanocomposite hydrogels, Polym. Eng. Sci. 59 (2019) 170–181. doi:10.1002/pen.24884.
[107] M. Capurro, F. Barberis, Evaluating the mechanical properties of biomaterials, in: Biomater. Bone Regen., Elsevier, 2014: pp. 270–323. doi:10.1533/9780857098104.2.270.
[108] J. Mewis, N.J. Wagner, Colloidal Suspension Rheology, Cambridge University Press, Cambridge, 2011. doi:10.1017/CBO9780511977978.
[109] M.B. Salehi, A.M. Moghadam, Rheological Study of Polyacrylamide Hydrogels in Harsh Reservoir Condition for Water Shutoff, (n.d.) 8.
[110] A. Hajipour, M. Baghban Salehi, M. Vafaie Sefti, A. Heidari, Experimental study of polyacrylamide gel in close-in well operation, Polym. Adv. Technol. 29 (2018) 1278–1286. doi:10.1002/pat.4239.
[111] W. Zhao, H. Xu, Y. Liu, J. Xu, R. Luan, X. Feng, Temperature-dependent transmittance nanocomposite hydrogel with high mechanical strength and controllable swelling memory behavior, Eur. Polym. J. 112 (2019) 328–333. doi:10.1016/j.eurpolymj.2019.01.026.
[112] K. Haraguchi, T. Takehisa, M. Ebato, Control of Cell Cultivation and Cell Sheet Detachment on the Surface of Polymer/Clay Nanocomposite Hydrogels, Biomacromolecules. 7 (2006) 3267–3275. doi:10.1021/bm060549b.
[113] F. Fiorini, E.A. Prasetyanto, F. Taraballi, L. Pandolfi, F. Monroy, I. López-Montero, E. Tasciotti, L. De Cola, Nanocomposite Hydrogels as Platform for Cells Growth, Proliferation, and Chemotaxis, Small. 12 (2016) 4881–4893. doi:10.1002/smll.201601017.
[114] T. Dvir, B.P. Timko, M.D. Brigham, S.R. Naik, S.S. Karajanagi, O. Levy, H. Jin, K.K. Parker, R. Langer, D.S. Kohane, Nanowired three-dimensional cardiac patches, Nat. Nanotechnol. 6 (2011) 720–725. doi:10.1038/nnano.2011.160.
[115] M. Kheirabadi, R. Bagheri, K. Kabiri, Swelling and mechanical behavior of nanoclay reinforced hydrogel: single network vs. full interpenetrating polymer network, Polym. Bull. 72 (2015) 1663–1681. doi:10.1007/s00289-015-1362-z.
[116] X. Su, B. Chen, Tough, resilient and pH-sensitive interpenetrating polyacrylamide/alginate/montmorillonite nanocomposite hydrogels, Carbohydr. Polym. 197 (2018) 497–507.
[117] S. Ahadian, J. Ramón-Azcón, M. Estili, X. Liang, S. Ostrovidov, H. Shiku, M. Ramalingam, K. Nakajima, Y. Sakka, H. Bae, T. Matsue, A. Khademhosseini, Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication, Sci. Rep. 4 (2014) 4271.
[118] A. Tripathi, S. Saravanan, S. Pattnaik, A. Moorthi, N.C. Partridge, N. Selvamurugan, Bio-composite scaffolds containing chitosan/nano-hydroxyapatite/nano-copper–zinc for bone tissue engineering, Int. J. Biol. Macromol. 50 (2012) 294–299. doi:10.1016/j.ijbiomac.2011.11.013.
[119] C. Chang, N. Peng, M. He, Y. Teramoto, Y. Nishio, L. Zhang, Fabrication and properties of chitin/hydroxyapatite hybrid hydrogels as scaffold nano-materials, Carbohydr. Polym. 91 (2013) 7–13. doi:10.1016/j.carbpol.2012.07.070.
[120] S.A. Meenach, J.Z. Hilt, K.W. Anderson, Poly(ethylene glycol)-based magnetic hydrogel nanocomposites for hyperthermia cancer therapy, Acta Biomater. 6 (2010) 1039–1046. doi:10.1016/j.actbio.2009.10.017.
[121] Y. Cerda, I. Zapata-González, A. Licea-Claverı́e, A. Zizumbo-Lopez, L. Ramos, A. Espinoza‐Martínez, Poly(hexylacrylate) Core -poly(ethyleneglycol methacrylate) Shell nanogels as fillers for poly(2-hydroxyethyl methacrylate) nanocomposite hydrogels, 2018. doi:10.1002/pen.24884.
[122] A. Barati, Z. Eskandari, S.T. Miri, M. Asgari, Removal of Fluoride Ion from Aqueous Solution by Nanocomposite Hydrogel Based on Starch/Sodium Acrylate/Nano Aluminum Oxide, Sci. Technol. 26 (n.d.) 381–391.
[123] M. Zhong, Y.-T. Liu, X.-M. Xie, Self-healable, super tough graphene oxide–poly(acrylic acid) nanocomposite hydrogels facilitated by dual cross-linking effects through dynamic ionic interactions, J. Mater. Chem. B. 3 (2015) 4001–4008. doi:10.1039/C5TB00075K.
[124] G. Deen, V. Chua, Synthesis and Properties of New “Stimuli” Responsive Nanocomposite Hydrogels Containing Silver Nanoparticles, Gels. 1 (2015) 117–134. doi:10.3390/gels1010117.
[125] W.L. Hom, S.R. Bhatia, Significant enhancement of elasticity in alginate-clay nanocomposite hydrogels with PEO-PPO-PEO copolymers, Polymer. 109 (2017) 170–175. doi:10.1016/j.polymer.2016.12.058.
[126] Q.-B. Wei, F. Fu, Y.-Q. Zhang, L. Tang, Preparation, characterization, and antibacterial properties of pH-responsive P(MMA-co-MAA)/silver nanocomposite hydrogels, J. Polym. Res. 21 (2014) 349. doi:10.1007/s10965-013-0349-4.
[127] C. Shao, M. Wang, H. Chang, F. Xu, J. Yang, A Self-Healing Cellulose Nanocrystal-Poly(ethylene glycol) Nanocomposite Hydrogel via Diels–Alder Click Reaction, ACS Sustain. Chem. Eng. 5 (2017) 6167–6174. doi:10.1021/acssuschemeng.7b01060.
[128] G. Gao, G. Du, Y. Sun, J. Fu, Self-Healable, Tough, and Ultrastretchable Nanocomposite Hydrogels Based on Reversible Polyacrylamide/Montmorillonite Adsorption, ACS Appl. Mater. Interfaces. 7 (2015) 5029–5037. doi:10.1021/acsami.5b00704.
[129] Q. Wang, J.L. Mynar, M. Yoshida, E. Lee, M. Lee, K. Okuro, K. Kinbara, T. Aida, High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder, Nature. 463 (2010) 339.
[130] A. Servant, V. Leon, D. Jasim, L. Methven, P. Limousin, E.V. Fernandez-Pacheco, M. Prato, K. Kostarelos, Graphene-Based Electroresponsive Scaffolds as Polymeric Implants for On-Demand Drug Delivery, Adv. Healthc. Mater. 3 (2014) 1334–1343. doi:10.1002/adhm.201400016.
[131] W. Zhao, K. Odelius, U. Edlund, C. Zhao, A.-C. Albertsson, In Situ Synthesis of Magnetic Field-Responsive Hemicellulose Hydrogels for Drug Delivery, Biomacromolecules. 16 (2015) 2522–2528. doi:10.1021/acs.biomac.5b00801.
[132] A. Karimi, W.M.A. Wan Daud, Materials, preparation, and characterization of PVA/MMT nanocomposite hydrogels: A review, Polym. Compos. 38 (2017) 1086–1102. doi:10.1002/pc.23671.
[133] S. Liu, M. Huang, Preparation and Properties of Graphene Oxide Modified Nanocomposite Hydrogels, IOP Conf. Ser. Mater. Sci. Eng. 62 (2014) 012017. doi:10.1088/1757-899X/62/1/012017.
[134] A.K. Gaharwar, S.A. Dammu, J.M. Canter, C.-J. Wu, G. Schmidt, Highly Extensible, Tough, and Elastomeric Nanocomposite Hydrogels from Poly(ethylene glycol) and Hydroxyapatite Nanoparticles, Biomacromolecules. 12 (2011) 1641–1650. doi:10.1021/bm200027z.
[135] A.K. Gaharwar, C. Rivera, C.-J. Wu, B.K. Chan, G. Schmidt, Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: Structural, mechanical and cell adhesion characteristics, Mater. Sci. Eng. C. 33 (2013) 1800–1807. doi:10.1016/j.msec.2012.12.099.
[136] S. Zhong, L.Y.L. Yung, Enhanced biological stability of collagen with incorporation of PAMAM dendrimer, J. Biomed. Mater. Res. A. 91A (2009) 114–122. doi:10.1002/jbm.a.32188.
[137] M. Rasoulzadeh, H. Namazi, Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent, Carbohydr. Polym. 168 (2017) 320–326. doi:10.1016/j.carbpol.2017.03.014.
[138] G.R. Mahdavinia, A. Afzali, H. Etemadi, H. Hoseinzadeh, Magnetic/pH-sensitive nanocomposite hydrogel based carboxymethyl cellulose –g- polyacrylamide/montmorillonite for colon targeted drug delivery, Nanomedicine Res. J. 2 (2017). doi:10.22034/nmrj.2017.58964.1058.
[139] H.-P. Cong, P. Wang, S.-H. Yu, Stretchable and Self-Healing Graphene Oxide–Polymer Composite Hydrogels: A Dual-Network Design, 2013. doi:10.1021/cm401919c.
[140] A. López-Noriega, C.L. Hastings, B. Ozbakir, K.E. O’Donnell, F.J. O’Brien, G. Storm, W.E. Hennink, G.P. Duffy, E. Ruiz-Hernández, Hyperthermia-Induced Drug Delivery from Thermosensitive Liposomes Encapsulated in an Injectable Hydrogel for Local Chemotherapy, Adv. Healthc. Mater. 3 (2014) 854–859. doi:10.1002/adhm.201300649.
[141] R. Seyrani, G.B. Marandi, Carrageenan-based Hydrogel Nanocomposites Prepared in Presence of Carbon Nanotubes and Their Adsorption of Brilliant Green, Iran J Polym Sci TechnolPersian. 28 (2016) 528–517.
[142] J. Wang, W. Wu, Swelling behaviors, tensile properties and thermodynamic studies of water sorption of 2-hydroxyethyl methacrylate/epoxy methacrylate copolymeric hydrogels, Eur. Polym. J. 41 (2005) 1143–1151. doi:10.1016/j.eurpolymj.2004.11.034.
[143] G. Mahdavinia, A. Baghban, S. Zorofi, A. Massoudi, Kappa-Carrageenan Biopolymer-Based Nanocomposite Hydrogel and Adsorption of Methylene Blue Cationic Dye from Water, 2014.
[144] M. Çelik, M. Önal, Synthesis and characterization of poly(glycidyl methacrylate)/Na-montmorillonite nanocomposites: Synthesis and Characterization of PGMA/NA-MMT Nanocomposites, J. Appl. Polym. Sci. 94 (2004) 1532–1538. doi:10.1002/app.21075.
[145] M. Aflaki Jalali, A. Dadvand Koohi, M. Sheykhan, Experimental study of the removal of copper ions using hydrogels of xanthan, 2-acrylamido-2-methyl-1-propane sulfonic acid, montmorillonite: Kinetic and equilibrium study, Carbohydr. Polym. 142 (2016) 124–132. doi:10.1016/j.carbpol.2016.01.033.
[146] H. Hosseinzadeh, S. Zoroufi, G.R. Mahdavinia, Study on adsorption of cationic dye on novel kappa-carrageenan/poly(vinyl alcohol)/montmorillonite nanocomposite hydrogels, Polym. Bull. 72 (2015) 1339–1363. doi:10.1007/s00289-015-1340-5.
[147] F. Shakib, A. Dadvand Koohi, A. Kamran Pirzaman, Adsorption of methylene blue by using novel chitosan-g-itaconic acid/bentonite nanocomposite – equilibrium and kinetic study, Water Sci. Technol. 75 (2017) 1932–1943. doi:10.2166/wst.2017.077.
[148] W. Kong, M. Chang, C. Zhang, X. Liu, B. He, J. Ren, Preparation of Xylan-g-/P(AA-co-AM)/GO Nanocomposite Hydrogel and its Adsorption for Heavy Metal Ions, Polymers. 11 (2019) 621. doi:10.3390/polym11040621.
[149] Y. Yu, G. Zhang, L. Ye, Preparation and adsorption mechanism of polyvinyl alcohol/graphene oxide-sodium alginate nanocomposite hydrogel with high Pb(II) adsorption capacity, J. Appl. Polym. Sci. 136 (2019) 47318. doi:10.1002/app.47318.
[150] B. Rahnama, H. Baniasadi, M. Lotfi, Fabrication of PVA/Gr/TiO2 adsorbent and study of its application in removal of malachite green, Mdrsjrns. 3 (2019) 59–68.
[151] H. Zhu, X. Yao, Synthesis and Characterization of Poly(Acrylamide-co-2-Acrylamido-2-Methylpropane Sulfonic Acid)/Kaolin Superabsorbent Composite, 2013. doi:10.1080/10601325.2013.741891.
[152] C. Zareie, M. Vafaei, A.R. Bahramian, M. Baghban Salehi, Investigation of the performance of silica nanoparticles in increasing the strength of a polymer gel prepared by polyacrylamide in oil well condition, Mdrsjrns. 1 (2018) 39–49.