Oxidative Dehydrogenation of Propane with CO2 Oxidant over vanadium catalyst supported on Titania-Silicon Nanostructures

Document Type : Original Research

Authors

1 Quchan University of Technology

2 Zanjan University of Technology

Abstract
Dehydrogenation of alkane to alkene is a key process in petrochemical industry. Propylene has intermediate role to production many industrial polymers. In this research applying oxidative dehydrogenation method for propylene production and CO2 used as oxidant. By use of XRD, Raman, TEM, BET and EDX techniques the results have been analyzed. In XRD and Raman tests anatase phase and Titania nanotubes have been distinguished. TEM confirmed TiNTs with pure structure. Vanadium catalyst with 5% of vanadia synthesized by impregnation method. Adding silicon in support increased thermal stability of catalyst. Raman and XRD method confirmed good distribution of active phase on supports. VSiTi catalyst have 28.31% conversion and 51% selectivity in 550 oC. Improvement in yield of propylene production would be in result of higher surface area and good distribution of vanadia over modified Titania nanotubes.

Keywords

Subjects


[1] پدرام ناصحی و مجتبی ساعی مقدم، سنتز نانو ساختارهای تیتانیا با پایداری حرارتی افزایش‌یافته به جهت افزایش کارایی کاتالیست در فرآیند هیدروژن زدایی اکسایشی اتان» دومین کنفرانس ملی زیرساخت های انرژی، مهندسی برق و نانو فناوری، 1396.
[2] Tan, S.; Hu, B.; Kim, Propane Dehydrogenation over Alumina-Supported ron/Phosphorus Catalysts: Structural Evolution of Iron Species Leading to High Activity and Propylene Selectivity. ACS Catal. 2016, 6, 5673-5683.
[3] Pedram nasehi, mojtaba Saei moghadam , "Simulating the production process Dodecyl benzene along with optimizing the energy consumption in distillation tower process" , The 10th International Chemical Engineering Congress & Exhibition (IChEC 2018).
[4] Mojtaba Saei Moghaddam , Ali Mataei Moghaddam, Pedram Nasehi, Characterization of Hydrogen Titania Nanotubes Synthesized via Hydrothermal Treatment , 2bn international biennial oil, Gas and petrochemical Conference 2018.
[5] Gannoun C, Turki A, Kochkar H, Delaigle R, Eloy P, Ghorbel A, Gaigneaux EM. Elaboration and characterization of sulfated and unsulfated V2O5/TiO 2 nanotubes catalysts for chlorobenzene total oxidation. Applied Catalysis B: Environmental. 2014;147:58-64.
[6] Kootenaei AS, Towfighi J, Khodadadi A, Mortazavi Y. Stability and catalytic performance of vanadia supported on nanostructured titania catalyst in oxidative dehydrogenation of propane. Applied Surface Science. 2014;298:26-35.

[7] Guerrero-Pérez MO. Supported, bulk and bulk-supported vanadium oxide catalysts: A short review with an historical perspective. Catalysis Today. 2017;285:226-33.
[8] M.A. Botavina, Y.A. Agafonov, N.A. Gaidai, E. Groppo, V. Cortés Corberán, A.L. Lapidus, G. Martra, Catal. Sci. Technol. 6 (2016) 840–850.

[9] S. Kawi, Y. Kathiraser, J. Ni, U. Oemar, Z. Li, E.T. Saw, ChemSusChem 8 (2015) 3556– 3575.
[10] Kim SJ, Yun YU, Oh HJ, Hong SH, Roberts CA, Routray K, Wachs IE. Characterization of hydrothermally prepared titanate nanotube powders by ambient and in situ Raman spectroscopy. The Journal of Physical Chemistry Letters. 2009;1(1):130-5.

[11] Qian L, Du ZL, Yang SY, Jin ZS. Raman study of titania nanotube by soft chemical process. Journal of Molecular Structure. 2005;749(1):103-7.
[12] H. Thakkar, A. Issa, A.A. Rownaghi, F. Rezaei, Chem. Eng. Technol. 40 (2017) 1–10.

[13] Heracleous E, Machli M, Lemonidou AA, Vasalos IA. Oxidative dehydrogenation of ethane and propane over vanadia and molybdena supported catalysts. Journal of Molecular Catalysis A: Chemical. 2005;232(1):29-39.
[14] H. Thakkar, S. Eastman, A. Al-Mamoori, A. Hajari, A.A. Rownaghi, F. Rezaei, ACS Appl. Mater. Interfaces 9 (2017) 7489–7498.

[15] Kondratenko EV, Baerns M. Catalytic oxidative dehydrogenation of propane in the presence of O 2 and N 2 O—the role of vanadia distribution and oxidant activation. Applied Catalysis A: General. 2001;222(1):133-43.
[16] Al-Ghamdi S, Moreira J, de Lasa H. Kinetic Modeling of Propane Oxidative Dehydrogenation over VO x/γ-Al2O3 Catalysts in the Chemical Reactor Engineering Center Riser Reactor Simulator. Industrial & Engineering Chemistry Research. 2014;53(40):15317-32.

[17] Liu Y, Jiang C, Chu W, Sun W, Xie Z. Novel F–V2O5/SiO2 catalysts for oxidative dehydrogenation of propane. Reaction Kinetics, Mechanisms and Catalysis. 2010;101(1):141-51.
[18] Liu YM, Wang LC, Chen M, Xu J, Cao Y, He HY, Fan KN. Highly selective Ce–Ni–O catalysts for efficient low temperature oxidative dehydrogenation of propane. Catalysis letters. 2009 ;130(3-4):350-4.

[19] Taylor MN, Carley AF, Davies TE, Taylor SH. The oxidative dehydrogenation of propane using vanadium oxide supported on nanocrystalline ceria. Topics in Catalysis. 2009;52(12):1660-8.
[20] Machli M, Lemonidou AA. Optimization of V 2 O 5–MgO/TiO 2 catalyst for the oxidative dehydrogenation of propane effect of magnesia loading and preparation procedure. Catalysis letters. 2005;99(3):221-30.

[21] a. H.S. Kootenaei, J. Towfighi, a. Khodadadi, Y. Mortazavi, Appl. Surf. Sci. 298 (2014) 26–35.
[22] Ma F, Chen S, Li Y, Zhou H, Xu A, Lu W. Nano-MgO supported CrO x catalysts applied in propane oxidative dehydrogenation: Relationship between active chromium phases and propane reaction pathway. Applied Surface Science. 2014;313:654-9.