[1] lker U.Z. Sanli D. Erkey C., Applications of Aerogels and Their Composites in Energy-Related Technologies, Department of Chemical and Biological Engineering Koc University, 157-176, 2014.
[2] Wiener M. Reichenauer G. Braxmeier S. Hemberger F. Ebert H.P., Carbon Aerogel-Based High-Temperature Thermal Insulation, International Journal of Thermophysics, 30(4), 1372-1385, 2009.
[3] Grujicic M. Pandurangan B. Zhao C. Biggers S. Morgan D., Hypervelocity Impact Resistance of Reinforced Carbon–Carbon/Carbon–Foam Thermal Protection Systems, Applied Surface Science, 252(14), 5035-5050, 2006.
[4] Hadizadeh Raeisi H.R. Razzaghi M. Bahramian A.R. Razzaghi Kashani M., Cellulose Cork/phenolic Aerogel Nanocomposites as a Lightweight Thermal Insulator, Procedia Materials Science, 11, 527 – 530, 2015.
[5] Arkadi M. Gorat S.Y. Frank S. Jutta Z. Manfred D. Johann M., Carbon aerogels, process for their preparation and their use, United States Patent 9878911, 2018.
[6] Zu G. Shen J. Zou L. Wang F. Zhang Y., Nanocellulose-Derived Highly Porous Carbon Aerogels for Supercapacitors, Carbon, 2015.
[7] Biener J. Stadermann M. Suss M. Worsley M.A. Biener M.M. Rose K.A. Baumann T.F., Advanced Carbon Aerogels for Energy Applications, Energy and Environmental Science, 4(3), 656-667, 2011.
[8] Worsley M.A. Baumann T.F., Handbook of Sol-Gel Science and Technology: Carbon Aerogels, Springer International Publishing Switzerland, 2016.
[9] Aegerter M.A. Leventis N. Koebel M., Aerogels Handbook (Advances in Sol-Gel Derived Materials and Technologies), Springer Publisher, 2011.
[10] Li J. Wang X. Wang Y. Huang Q. Dai C. Gamboa S. Sebastian P.J., Structure and Electrochemical Properties of Carbon Aerogels Synthesized at Ambient Temperatures as Supercapacitors, Journal of Non-Crystalline Solids, 354(1), 19-24, 2008.
[11] Naseri I. Kazemi A. Bahramian A.R. Razzaghi Kashani M., Preparation of Organic and Carbon Aerogels Using High-Temperature–Pressure Sol–Gel Polymerization, Materials and Design, 61, 35-40, 2014.
[12] Kazemi A. Naseri I. Bahramian A.R., Thermal Protection Performanceof Carbon Aerogels Filled with Magnesium Chloride Hexahydrate as a Phase Change Material, Science and Technology, 26(6), 525-535, 2014.
[13] Liu H. Li T. Wang X. Zhang W. Zhao T., Preparation and Characterization of Carbon Foams with Highmechanical Strength Using Modified Coal Tar Pitches, Journal of Analytical and Applied Pyrolysis, 110, 442–447, 2014.
[14] Petrova B. Tsyntsarski B. Budinova T. Petrov N. Ania C.O. Parra J.B. Mladenov M. Tzvetkov P., Synthesis of Nanoporous Carbons from Mixtures of Coal Tar Pitch and Furfural and Their Application as Electrode Materials, Fuel Processing Technology, 91, 1710–1716, 2010.
[15] Wang Y. He Z. Zhan L. Liu X., Coal Tar Pitch Based Carbon Foam for Thermal Insulating Material, Materials Letters, 2016.
[16] Yu C.H. Fu Q.J. Tsang S.C.E., Aerogel Materials for Insulation in Buildings, University of Oxford, 319-344, 2010.
[17] Motahari S., Synthesis of Resorcinol- Formaldehyde Aerogel and Effect of PH Value and Density on Compressive Strength, 10th International Seminar on Polymer Science and Technology, Tehran, Iran, 2012.
[18] Singh S. Bhatnagar A. Dixit V. Shukla V. Shaz M.A.A. Sinha S.K. Srivastava O.N. Sekkar V., Synthesis, Characterization and Hydrogen Storage Characteristics of Ambient Pressure Dried Carbon Aerogel, International Journal of Hydrogen Energy, 1-10, 2016.
[19] Yang K. Peng J. Srinivasakannan C. Zhang L. Xia H. Duan X., Preparation of High Surface Area Activated Carbon from Coconut Shells Using Microwave Heating, Bioresource Technology, 101, 6163–6169, 2010.
[20] Theodoropoulou S. Papadimitriou D. Zoumpoulakis L. Simitzis J., Structural and Optical Characterization of Pyrolytic Carbon Derived from Novolac Resin, Anal Bioanal Chem, 3(79), 788–791, 2004.
[21] Yun J. Chen L. Zhang X. Feng J. Liu L., The Effect of Introducing B and N on Pyrolysis Process of High Ortho Novolac Resin, Polymers, 2016.
[22] Guo1 Zh. Wang Ch. Chen M. Li M., Hard Carbon Derived from Coal Tar Pitch for Use as the Anode Material in Lithium Ion Batteries, Int. J. Electrochem. Sci., 8, 2702 – 2709, 2013.
[23] Job N. et al., Non-Intrusive Mercury Porosimetry: Pyrolysis of Resorcinol-Formaldehyde Xerogels, Particle& Particle Systems Characterization, 23(1), 72-81, 2006.