1 Hamedi H., Moradi S., Hudson S.M., Tonelli AE. Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review. Carbohydrate Polymers. 199, 445-60,2018.
2 El Knidri H., Belaabed R., Addaou A., Laajeb A., Lahsini A. Extraction, chemical modification and characterization of chitin and chitosan. International Journal of Biological Macromolecules. 120,1181-9, 2018.
3 Pellá M.C.G., Lima-Tenório M.K., Tenório-Neto E.T., Guilherme M.R., Muniz E.C., Rubira A.F. Chitosan-based hydrogels: From preparation to biomedical applications. Carbohydrate Polymers. 196, 233-45, 2018.
4 Ahmed S., Annu, Ali A., Sheikh J. A review on chitosan centred scaffolds and their applications in tissue engineering. International Journal of Biological Macromolecules. 116, 849-862, 2018.
5 Milosavljević N.B., Kljajević L.M., Popović I.G., Filipović J.M., Kalagasidis Krušić M.T. Chitosan, itaconic acid and poly(vinyl alcohol) hybrid polymer networks of high degree of swelling and good mechanical strength. Polymer International. 59(5),686-694, 2010.
6 Singh A., Narvi S.S., Dutta P.K., Pandey N.D. External stimuli response on a novel chitosan hydrogel crosslinked with formaldehyde. Bulletin of Materials Science. 29(3),233-8,2006.
7 Liu R., Xu X., Zhuang X., Cheng B. Solution blowing of chitosan/PVA hydrogel nanofiber mats. Carbohydr Polymer. 101,1116-21, 2014.
8 Muzzarelli R.A.A. Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydrate Polymers. 77(1), 1-9, 2009.
9 Montembault A., Viton C., Domard A. Rheometric Study of the Gelation of Chitosan in Aqueous Solution without Cross-Linking Agent. Biomacromolecules. 6(2),653-62,2005.
10 Liu L., Tang X., Wang Y., Guo S. Smart gelation of chitosan solution in the presence of NaHCO3 for injectable drug delivery system. International journal of pharmaceutics. 414(1-2), 6-15, 2011.
11 Croisier F., Jérôme C. Chitosan-based biomaterials for tissue engineering. European Polymer Journal. 49(4), 780-92, 2013.
12 Xu B., Wang L., Liu Y., Zhu H., Wang Q. Preparation of high strength and transparent nanocomposite hydrogels using alumina nanoparticles as cross-linking agents. Materials Letters. 228, 104-7, 2018.
13 Xie Y., Liao X., Zhang J., Yang F., Fan Z. Novel chitosan hydrogels reinforced by silver nanoparticles with ultrahigh mechanical and high antibacterial properties for accelerating wound healing. International Journal of Biological Macromolecules. 119, 402-12, 2018.
14 Szcześ A., Hołysz L., Chibowski E. Synthesis of hydroxyapatite for biomedical applications. Advances in Colloid and Interface Science. 249, 321-30, 2017.
15 Yoshikawa H., Tamai N., Murase T., Myoui A. Interconnected porous hydroxyapatite ceramics for bone tissue engineering. Journal of the Royal Society, Interface. 6 Suppl 3(Suppl 3):S341-S8, 2009.
16 Nikpour M.R., Rabiee S.M., Jahanshahi M. Synthesis and characterization of hydroxyapatite/chitosan nanocomposite materials for medical engineering applications. Composites Part B: Engineering. 43(4),1881-6, 2012.
17 Chang C., Peng N., He M., Teramoto Y., Nishio Y., Zhang L. Fabrication and properties of chitin/hydroxyapatite hybrid hydrogels as scaffold nano-materials. Carbohydr Polymer. 91(1), 7-13, 2013.
.
18 Fricain J.C., Schlaubitz S., Le Visage C., Arnault I., Derkaoui S.M., Siadous R., et al. A nano-hydroxyapatite--pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering. Biomaterials. 34(12), 2947-59, 2013.
19 Saxena V., Hasan A., Pandey L.M. Effect of Zn/ZnO integration with hydroxyapatite: a review. Materials Technology. 33(2), 79-92, 2018.
20Meshkini A. Modulation of Oxidative Stress in Thrombin-Stimulated Platelets by Almond by-Product. Waste and Biomass Valorization. 9(6), 1015-25, 2018.
21 Pezeshkpour V., Khosravani S.A., Ghaedi M., Dashtian K., Zare F., Sharifi A., et al. Ultrasound assisted extraction of phenolic acids from broccoli vegetable and using sonochemistry for preparation of MOF-5 nanocubes: Comparative study based on micro-dilution broth and plate count method for synergism antibacterial effect. Ultrasonics Sonochemistry. 40,1031-8, 2018.
22 Meshkini A. Acetone Extract of Almond Hulls Provides Protection against Oxidative Damage and Membrane Protein Degradation. Journal of acupuncture and meridian studies. 9(3), 134-42, 2016.
23 Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry. 72, 248-54, 1976.
24Hashemian S. A Comparative Study of Cellulose Agricultural Wastes (Almond Shell, Pistachio Shell, Walnut Shell, Tea Waste And Orange Peel) for Adsorption of Violet B Dye from Aqueous Solutions. Oriental Journal Chemistry. 30, 4, 2014.
25 Zhang N., Gao T., Wang Y., Wang Z., Zhang P., Liu J. Environmental pH-controlled loading and release of protein on mesoporous hydroxyapatite nanoparticles for bone tissue engineering. Materials science & engineering C, Materials for biological applications. 46, 158-65, 2015.
26 Contri R.V., Soares R.M.D., Pohlmann A.R., Guterres S.S. Structural analysis of chitosan hydrogels containing polymeric nanocapsules. Materials Science and Engineering: C. 42, 234-42, 2014.
27 Ngo D.H., Kim S.K. Chapter Two - Antioxidant Effects of Chitin, Chitosan, and Their Derivatives. In: Kim S-K, editor. Advances in food and nutrition research. 73: Academic Press;. p. 15-31, 2014.
28 Ngo D.H., Kim S.K. Antioxidant effects of chitin, chitosan, and their derivatives. Advances in food and nutrition research. 73,15-31, 2014.
29 Jin P., Wu H., Xu G., Zheng L., Zhao J. Epigallocatechin-3-gallate (EGCG) as a pro-osteogenic agent to enhance osteogenic differentiation of mesenchymal stem cells from human bone marrow: an in vitro study. Cell and tissue research. 356(2), 381-90, 2014.
30 Sistanipour E., Meshkini A., Oveisi H. Catechin-conjugated mesoporous hydroxyapatite nanoparticle: A novel nano-antioxidant with enhanced osteogenic property. Colloids and surfaces B, Biointerface, 169, 329-339, 2018.
31 Aubin J.E. Regulation of osteoblast formation and function. Reviews in endocrine & metabolic disorders. 2(1), 81-94, 2001.
32 Rodriguez-Valencia C., Freixeiro P., Serra J., Ferreiros C.M., Gonzalez P., Lopez-Alvarez M. In vitro evaluation of the antibacterial and osteogenic activity promoted by selenium-doped calcium phosphate coatings. Biomedical materials (Bristol, England). 12(1), 015028, 2017.