Hypothesis: One potential method for improving nanocomposite mixed matrix membranes is through the use of nanoparticles and compounds containing hydroxyl and carboxyl groups, which may aid in the penetration of CO2 gas. In this study, we investigated the selectivity and permeability of a polyether block amide/polyvinyl alcohol (Pebax/PVA) nanocomposite membrane containing magnesium oxide (MgO) nanoparticles. Previous research has shown that the addition of MgO to the Pebax/PVA matrix can increase CO2 permeability by creating an intermolecular space.
Methods: Prepared a Pebax/PVA nanocomposite membrane with a weight ratio of 80:20, containing 10% MgO nanoparticles, through a solution casting method. Evaluated the performance of the Pebax/PVA/MgO nanocomposite membrane for separating CH4 and CO2 gases using various tests.
Findings: Characterized the membranes through Fourier transform infrared (FTIR), X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM) tests. FESEM images showed increased surface roughness with the addition of nanoparticles, and the nanoparticles were well dispersed within the polymer matrix. XRD analysis indicated that MgO nanoparticles had more interaction with PVA chains than with Pebax chains, and peaks at 42° and 62° regions were formed due to the placement of MgO nanoparticles among the polymer chains. We studied various parameters, including polyvinyl alcohol and MgO nanoparticle content, pressure, and temperature, as independent variables and examined their effects on the permeability of CH4 and CO2 gases. We measured the permeability of the constructed membranes and found that the addition of MgO significantly increased the permeability of CH4 and CO2.
Article Type:
Original Research |
Subject:
nano-composite Received: 2023/05/16 | Accepted: 2023/10/14 | Published: 2023/12/20