[1] A. Corma, L. Sauvanaud, Y. Mathieu, S. Al-Bogami, A. Bourane, and M. Al-Ghrami, “Direct Crude Oil Cracking for Producing Chemicals: Thermal Cracking Modeling,” Fuel, Vol. 211, No. October 2017, Pp. 726–736, 2018, Doi: 10.1016/J.Fuel.2017.09.099.
[2] Z. Zhai, X. Wang, R. Licht, and A. T. Bell, “Selective Oxidation and Oxidative Dehydrogenation of Hydrocarbons on Bismuth Vanadium Molybdenum Oxide,” J. Catal., Vol. 325, Pp. 87–100, 2015, Doi: 10.1016/J.Jcat.2015.02.015.
[3] J. J. H. B. Sattler, J. Ruiz-Martinez, E. Santillan-Jimenez, and B. M. Weckhuysen, “Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides,” Chem. Rev., Vol. 114, No. 20, Pp. 10613–10653, 2014, Doi: 10.1021/Cr5002436.
[4] F. Cavani, N. Ballarini, and A. Cericola, “Oxidative Dehydrogenation of Ethane and Propane: How Far from Commercial Implementation?,” Catal. Today, Vol. 127, No. 1–4, Pp. 113–131, 2007.
[5] N. I. Kuznetsova Et Al., “Selective Dehydrogenation of Propane to Propene with O2-H 2 on Bifunctional Pt-H3pmo12o40 Catalysts,” Appl. Catal. A Gen., Vol. 477, Pp. 1–7, 2014, Doi: 10.1016/J.Apcata.2014.03.001.
[6] P. Novotný, S. Yusuf, F. Li, and H. H. Lamb, “Moo3/Al2o3 Catalysts for Chemical-Looping Oxidative Dehydrogenation of Ethane,” J. Chem. Phys., Vol. 152, No. 4, 2020, Doi: 10.1063/1.5135920.
[7] F. Cavani and F. Trifirò, “The Oxidative Dehydrogenation of Ethane and Propane as an Alternative Way for The Production of Light Olefins,” Catal. Today, Vol. 24, No. 3, Pp. 307–313, 1995, Doi: 10.1016/0920-5861(95)00051-G.
[8] B. Chu, L. Truter, T. A. Nijhuis, and Y. Cheng, “Performance of Phase-Pure M1 Movnbteox Catalysts by Hydrothermal Synthesis with Different Post-Treatments for the Oxidative Dehydrogenation of Ethane,” Appl. Catal. A Gen., Vol. 498, Pp. 99–106, 2015, Doi: 10.1016/J.Apcata.2015.03.039.
[9] P. Botella, A. Dejoz, J. M. L. Nieto, P. Concepción, and M. I. Vázquez, “Selective Oxidative Dehydrogenation of Ethane over Movsbo Mixed Oxide Catalysts,” Appl. Catal. A Gen., Vol. 298, No. 1–2, Pp. 16–23, 2006, Doi: 10.1016/J.Apcata.2005.09.018.
[10] B. Y. Jibril and S. Ahmed, “Oxidative Dehydrogenation of Propane over Co, Ni and Mo Mixed Oxides/Mcm-41 Catalysts: Effects of Intra- and Extra-Framework Locations of Metals on Product Distributions,” Catal. Commun., Vol. 7, No. 12, Pp. 990–996, 2006, Doi: 10.1016/J.Catcom.2006.04.017.
[11] Z. Wu, B. Jiang, and Y. Liu, “Effect of Transition Metals Addition on The Catalyst of Manganese/Titania for Low-Temperature Selective Catalytic Reduction of Nitric Oxide with Ammonia,” Applied Catalysis B: Environmental, Vol. 79, No. 4. Pp. 347–355, 2008, Doi: 10.1016/J.Apcatb.2007.09.039.
[12] N. Liu Et Al., “Ultrathin Graphene Oxide Encapsulated in Uniform Mil-88a(Fe) for Enhanced Visible Light-Driven Photodegradation of Rhb,” Appl. Catal. B Environ., Vol. 221, No. July 2017, Pp. 119–128, 2018, Doi: 10.1016/J.Apcatb.2017.09.020.
[13] A. H. Chughtai, N. Ahmad, H. A. Younus, A. Laypkov, and F. Verpoort, “Chem Soc Rev Metal – Organic Frameworks : Versatile Heterogeneous Catalysts for Efficient Catalytic Organic Transformations,” Chem. Soc. Rev., 2015, Doi: 10.1039/C4cs00395k.
[14] W. Xuan, C. Zhu, Y. Liu, and Y. Cui, “Chem Soc Rev Mesoporous Metal – Organic Framework Materials,” Pp. 1677–1695, 2012, Doi: 10.1039/C1cs15196g.
[15] M. Wautelet, J. M. Lehn, and A. Chaehoi, “Nanotechnologies,” Nanotechnologies. Pp. 1–210, 2009, Doi: 10.1049/Pbcs022e.
[16] R. Gao Et Al., “Morphology Control of Metal-Organic Frameworks by Co-Competitive Coordination Strategy for Low-Temperature Selective Catalytic Reduction of No with Nh3,” J. Solid State Chem., Vol. 297, P. 122031, 2021.
[17] B. Liu, Y. Li, S. C. Oh, Y. Fang, and H. Xi, “Fabrication of A Hierarchically Structured Hkust-1 by A Mixed-Ligand Approach,” Rsc Advances, Vol. 6, No. 66. Pp. 61006–61012, 2016, Doi: 10.1039/C6ra11917d.
[18] A. M. P. Peedikakkal and I. H. Aljundi, “Mixed-Metal Cu-Btc Metal-Organic Frameworks as a Strong Adsorbent for Molecular Hydrogen at Low Temperatures,” Acs Omega, Vol. 5, No. 44, Pp. 28493–28499, 2020.
[19] R. Senthil Kumar, S. Senthil Kumar, and M. Anbu Kulandainathan, “Efficient Electrosynthesis of Highly Active Cu3(Btc) 2-Mof and Its Catalytic Application to Chemical Reduction,” Microporous Mesoporous Mater., Vol. 168, Pp. 57–64, 2013, Doi: 10.1016/J.Micromeso.2012.09.028.
[20] E. D. Dikio and A. Farah, “Synthesis, Characterization and Comparative Study of Copper and Zinc Metal Organic Frameworks,” Chem. Sci. Trans., Vol. 2, No. 4, 2013, Doi: 10.7598/Cst2013.520.
[21] R. Kaur, A. Kaur, A. Umar, W. A. Anderson, and S. K. Kansal, “Metal Organic Framework (Mof) Porous Octahedral Nanocrystals of Cu-Btc: Synthesis, Properties and Enhanced Absorption Properties,” Mater. Res. Bull., Vol. 109, Pp. 124–133, 2019, Doi: 10.1016/J.Materresbull.2018.07.025.
[22] M. Zheng Et Al., “A Simple Additive-Free Approach for the Synthesis of Uniform Manganese Monoxide Nanorods with Large Specific Surface Area,” Nanoscale Research Letters, Vol. 8, No. 1. Pp. 1–7, 2013, Doi: 10.1186/1556-276x-8-166.
[23] Z. N. Kayani, M. Anjum, S. Riaz, S. Naseem, and T. Zeeshan, “Role of Mn in Biological, Optical, and Magnetic Properties Zno Nano-Particles,” Appl. Phys. A, Vol. 126, No. 3, Pp. 1–17, 2020.