کنترل پدیده طغیان در برج تقطیر سینی دار تحت خلاء با استفاده از پارامترهای عملیاتی و آزمایشگاهی

نوع مقاله : پژوهشی اصیل

نویسندگان

1 دانشجوی دکتری رشته مهندسی شیمی- دانشگاه آزاد یزد

2 عضو هیئت علمی دانشگاه یزد

3 عضو هیئت علمی دانشگاه آزاد یزد

چکیده
در این تحقیق وقوع پدیده طغیان به علت تجمع رسوبات در ناحیه ناودانی که منجر به افزایش بیش از حد مایع روی سینی های بالایی برج تقطیر شده بود در یک پالایشگاه مورد بررسی قرار گرفت.

فشار خلاء در ناحیه بالای برج، دبی آب تغذیه بویلر ورودی به کندانسور و دبی محصول خالص خروجی به عنوان سه پارامتر عملیاتی بسیار مهم و تأثیر گذار در کنترل شدت پدیده طغیان و نیز میزان کُک به عنوان یک پارامتر آزمایشگاهی مهم برای کاهش حجم رسوبات ورودی به برج تقطیر مد نظر قرار گرفت. داده ها و نتایج حاصل از تغییرات انجام شده بر روی هر یک از این سه پارامتر عملیاتی نشان دهنده موثر بودن آنها در کنترل شدت وقوع طغیان بود. به منظور کنترل و کاهش مشکلات ناشی از پدیده طغیان همزمان دور پمپ خلاء، دبی آب تغذیه بویلر ورودی به کندانسور و دبی محصول خالص خروجی تا نرمال شدن شرایط عملیاتی برج تقطیر به تناسب افزایش داده شد.

در این تحقیق چگونگی کنترل پدیده طغیان و کاهش اثرات نامطلوب ناشی از آن به دلیل تجمع رسوبات در ناحیه ناودانی سینی شماره 22 و بالاتر از آن مورد بررسی قرار گرفت. برای غلبه بر این مشکلات ابتدا دور پمپ خلاء از rpm850 به rpm1250 و دبی آب تغذیه بویلر ورودی به کندانسور از m3/hr 1.95 به m3/hr 3.2 افزایش داده شد. از طرفی به منظور جلوگیری از آلوده شدن محصول خالص، دبی محصول خالص خروجی نیز از kg/hr 925 تا kg/hr 2300 افزایش یافت. همچنین با کنترل منظم و دقیق شاخص میزان کُک به عنوان یک پارامتر آزمایشگاهی بسیار مهم، حجم روسبات کُک موجود در خوراک قطران زغال سنگ ورودی به برج تقطیر پس از یک مرحله سانتریفیوژ در بازه زمانی 30 روزه از مقدار 37.5 درصد وزنی به 18.4 کاهش یافت.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Control of flooding phenomena in vacuum distillation tray column using operational and laboratory parameters

نویسندگان English

hosein peiravan 1
Mohammad Javad Shirazi Sarraf 2
Ali Reza Ilkhani 3
Ali sheibani 3
Saeedeh Hashemian 3
1 PhD student in Chemical Engineering - Yazd Azad University
2 Faculty member of Yazd University
3 Faculty member of Yazd Azad University
چکیده English

Research subject: In this study, the occurrence of flooding due to the accumulation of sediment in the downcomer area, which led to an excessive increase in liquid on the upper trays of the distillation column was investigated in a refinery.

Research approach: Vacuum pressure in the upper area of the column, boiler feed water flow from the inlet to the condenser and the discharge of the net product as three very important and effective operational parameters in controlling the severity of the flooding phenomena and the amount of coking value as an important laboratory parameter to reduce the volume of inlet sediments entering the distillation column. Data and results of changes made on each of these three operational parameters showed their effectiveness in controlling the severity of the flooding phenomena.

Main results: In order to control and reduce the problems caused by the simultaneous flooding phenomena around the vacuum pump, the boiler feed water flow of the inlet to the condenser and the flow of the net output product were proportionally increased until the operating conditions of the distillation column are normalized. In this study, how to control the flooding phenomena and reduce the adverse effects due to the accumulation of sediments in the downcomer area of tray No. 22 and above was investigated.

To overcome these problems, first the vacuum pump rotation speed was increased from 850 rpm to 1250 rpm and the boiler feed water inlet to the condenser from 1.95 m3/hr to 3.2 m3/hr was increased. On the other hand, in order to prevent contamination of the pure product, the net output product flow rate also increased from 925 kg/hr to 2300 kg/hr. Also, with regular and accurate control of the coking value index as a very important laboratory parameter, the volume of coke sediments in the coal tar feed entering the distillation column was reduced from 37.5% by weight to 18.4% in a 30-day period after centrifugation.

کلیدواژه‌ها English

Coal tar
Flooding phenomena
Boiler feed water
Vacuum pressure
Coking value index
[1] Henry Z.Kister. Chapter 2 - Common Techniques for Distillation Troubleshooting. Distillation Operation and Applications, 37-101, 2014.
[2] K. El Korchi, R.Alami, A.Saadaoui, S.Mimount, A.Chaouch. Residence time distribution studies using radiotracers in a lab-scale distillation column: Experiments and modeling. Applied Radiation and Isotopes, 154, 108889, 2019.
[3] Wugen Gu a, Yuqing Huang a, Kan Wang a, Bingjian Zhang a, Qinglin Chen a, Chi-Wai Hui b. Comparative analysis and evaluation of three crude oil vacuum distillation processes for process selection. Energy, 76, 559-571, 2014.
[4] D.Remesat, K.Chuang, W.Svrcek. The Evaluation of Out-of-Level Trays for the Improvement of Industry Guidelines. Chemical Engineering Research and Design, 83, 508-514, 2005.
[5] Francisco Javier, Gutiérrez Ortiz. A pilot-scale laboratory experience for an inductive learning of hydrodynamics in a sieve-tray tower. Education for Chemical Engineers, 29, 42–55, 2019.
[6] Yong-gang Wang a, Guang-ce Jiang a, Sheng-juan Zhang a, Hai-yong Zhang a, Xiong-chao Lin a, Xin Huang a,b, Mao-hong Fan b,c. The application of a modified dissolving model to the separation of major components in low-temperature coal tar. Fuel Process Technol, 149, 313-319, 2016.
[7] R. Egashira, and J.Saito. Solvent Extraction of Coal Tar Absorption Oil with Continuous Countercurrent Spray Column. Journal of the Japan Petroleum Institute, 50(4), 218-226, 2007.
[8] R. Egashira, and C.Salim. Separation of Coal Tar Distillate by Solvent Extraction– Separation of Extract Phase Using Distillation. Journal of the Japan Petroleum Institute, 49(6), 326-334, 2006.
[9] Barbara Kozielska a, Jan Konieczynski b. Polycyclic aromatic hydrocarbons in particulate matter emitted from
coke oven battery. Fuel, 144, 327–334, 2015.
[10] Mrinmoy Mondala, Raka Mukherjeea, Apurva Sinhab, Supriya Sarkarb, Sirshendu Dea. Removal of cyanide from steel plant effluent using coke breeze, a waste product of steel industry. Journal of Water Process Engineering, 28, 135-143, 2019.
[11] Yuxiu Zhang a,d, Chaohai Wei a,b, Bo Yan a,c. Emission characteristics and associated health risk assessment of volatile organic compounds from a typical coking wastewater treatment plant. Science of the Total Environment, 693, 133417, 2019.
[12] B. Rajasekhar Reddya, B. Shravania, Bidyut Dasb, Pratik Swarup Dashb, R. Vinua. Microwave-assisted and analytical pyrolysis of coking and non-coking coals: Comparison of tar and char compositions. Journal of Analytical and Applied Pyrolysis, 142, 104614, 2019.
[13] Yibin Liu, Hao Yan, Xiaobo Chen, Xiang Feng, Chaohe Yang. Effect of blending ratio on coke morphology and composition in co-coking of vacuum residue and bio-tar. Journal of Analytical and Applied Pyrolysis, 141, 104629, 2019.
[14] Standard Guide For Determination of coking value. International Organization for Standardization, Geneva, Switzerland, ISO, 6998, 1997.
[15] N.D. Karlsen-Davies, G.A. Aggidis. Regenerative liquid ring pumps review and advances on design and performance. Applied Energy, 164, 815-825, 2016.
[16] C. Schreiber and M. Kopf.Theoretical Model for the Performance of Liquid Ring Pump Based on the Actual Operating Cycle, 361732, 2017.
[17] Renhui Zhang, Guangqiang Guo. Experimental study on gas-liquid transient flow in liquid-ring vacuum pump and its hydraulic excitation. 171, 109025, 2020.
[18] Jian Chen, Xing Lu, Qiuwang Wang, Min Zeng. Experimental investigation on thermal-hydraulic performance of a novel shell-and-tube heat exchanger with unilateral ladder type helical baffles. Applied Thermal Engineering, 161, 114099, 2019.
[19] Lokesh Kalapala, Jaya Krishna Devanuri. Parametric investigation to assess the melt fraction and melting time for a
latent heat storage material based vertical shell and tube heat exchanger. Solar Energy, 193, 360-371, 2019.
[20] Y. Haseli, I. Dincer, G.F. Naterer. Optimum temperatures in a shell and tube condenser with respect to exergy. International Journal of Heat and Mass Transfer, 51, 2462-2470, 2008.
[21] Adebola S. Kasumu, Nashaat N. Nassar, Anil K. Mehrotra. A Heat-Transfer Laboratory Experiment with
Shell-and-Tube Condenser. Education for Chemical Engineers, 19, 38-47, 2017.
[22] Jinjiang Wang, Laibin Zhang, Yinghao Zheng, Kebo Wang. Adaptive prognosis of centrifugal pump under variable
operating conditions. Mechanical Systems and Signal Processing, 131, 576-591, 2019.
[23] Xiao-meiGuo, Zu-chaoZhu, Gao-pingShi, YongHuang. Effects of rotational speeds on the performance of a centrifugal pump with a variable-pitch inducer. Journal of Hydrodynamics, 29, Issue 5, 854-862, 2017.
[24] Jiahui Sha, oHuifengLiu, YiliangHe. Boiler feed water deoxygenation using hollow fiber membrane contactor. Desalination, 234, 370-377, 2008.
[25] Hongbo Liu, Changzhu Yang, Wenhong Pu, Jingdong Zhang. Removal of nitrogen from wastewater for reusing to boiler feed-water by an anaerobic/aerobic/membrane bioreactor. Chemical Engineering Journal, 140, 122-129, 2008.
[26] J.H.Bulloch. Deaerator feedwater vessel weld cracking monitored over a service time of around 80,000 hours. International Journal of Pressure Vessels and Piping, 80, 607-615, 2003.
[27] Jim Bulloch. The use of constant probability fatigue curves in predicting deaerator vessel failure. International Journal of Pressure Vessels and Piping, 78, 331-336, 2001.
[28] E.Ferro, E.Ghiazza, B.Bosio P.Costa. Modelling of flash and stripping phenomena in deaerators for seawater desalination. Desalination, 142, 171-180, 2002.
[29] Wei Song, Jiaming Yang, Yingbo Ji, Changxing Zhang. Experimental study on characteristics of a dual temperature control valve in the chilled water system of an air-conditioning unit. Energy and Buildings, 202, 109369, 2019.
[30] Jiahai Huang, Xiaona Wang, Hao Wang, Huimin Hao. Development of a flow control valve with digital flow compensator. Flow Measurement and Instrumentation, 66, 157-169, 2019.
[31] Taimoor Asim, Rakesh Mishra, Antonio Oliveira, Matthew Charlton. Effects of the geometrical features of flow paths on the flow capacity of a control valve trim. Journal of Petroleum Science and Engineering, 172, 124-138, 2019.
[32] Johannes Lindner, Hermann Nirschl. A hybrid method for combining High-Gradient Magnetic Separation and centrifugation for a continuous process. Separation and Purification Technology, 131, 27-34, 2014.
[33] Marco Gleiss, Simon Hammerich, Michael Kespe, Hermann Nirschl. Application of the dynamic flow sheet simulation concept to the solid-liquid separation: Separation of stabilized slurries in continuous centrifuges. Chemical Engineering Science, 163, 167-178, 2017.