مطالعه آزمایشگاهی و مدلسازی جذب ماده فعال سطحی AOT بر روی ذرات سنگ کربناته

نوع مقاله : پژوهشی اصیل

نویسندگان

چکیده
روند رو به رشد مصرف انرژی و افزایش تقاضا برای نفت منجر به اعمال روش­هایی برای افزایش بازیافت نفت شده است. از جمله این روش­ها می­توان به روش­های شیمیایی ازدیاد برداشت اشاره کرد. اما عموماً تأثیر این روش­ها از مقادیر پیش­بینی شده توسط مطالعات، نامطلوب­تر بوده است. یکی از علل عمده این امر، از دست رفتن ماده فعال سطحی از طریق جذب یا ایجاد رسوب بر روی سطح سنگ است. ترکیب ­کانی­شناسی سنگ مخزن، در تعیین برهم­کنش­های بین سطح تماس مایع و جامد اثرگذار خواهد بود. این اثر به­صورت تغییر در بار سطحی جاذب و تغییر ترشوندگی خواهد بود. در این پژوهش به بررسی اثر جذب ماده فعال سطحی Dioctyl sulfosuccinate sodium salt (AOT) بر روی جاذب سنگ مخزن کربناته آب­دوست پرداخته شد. بدین منظور، پس از آماده‌سازی نمونه‌های سیال و سنگ، به بررسی جذب ماده فعال سطحی در غلظت­های زیر CMC و بیش­تر از آن پرداخته شد. نتایج نشان داد که با افزایش غلظت ماده فعال سطحی در توده فاز مایع، جذب افزایش می­یابد، تا در غلظت ppm1200به نقطه اشباع برسد. نتایج مدل­سازی نشان داد که ایزوترم تعادلی فروندلیش با میزان مساوی با 8971/0 به بهترین نحو، رفتار جذب ماده فعال سطحی AOT را پیش­بینی و توصیف می­کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental Investigation and Modeling of AOT Surfactant Adsorption on Carbonate Rock Particles

نویسندگان English

Sepideh Veiskaramia
Arezoo Jafari
Aboozar Soleymanzadehb
چکیده English

The enhancement of energy consumption and increasing demand for oil have led to using improve oil recovery methods. Chemical enhanced oil recovery methods are among the most widly used techniques. Generally, the effect of these methods has been less than the predicted amounts by the studies. One of the leading causes, could be due to the loss of chemicals by adsorption or precipitation of the surfactants on the rock surface. The mineralogy of the reservoir rocks is effective in determination of the interaction between the bulk of the fluid phase and rock surface. This effect will change in the surface charge of the adsorbent and wettability alteration of the rocks.

Research subject: In this study, the adsorption of AOT surfactant on the surface of a hydrophilic adsorbent of carbonate reservoir was investigated. For this purpose, after the preparation of rock and fluid samples, the adsorption of surfactant was investigated in concentrations below and above the CMC.

Research approach: Batch adsorption experiments were conducted to measure the amount of surfactant adsorption on the surface of carbonate rock. First different concenteration of AOT solutions and carbonate rock as adsorbent were combined. After 48h, the equilibrium concentrations were determined by using the calibration curve and. The amount of surfactant adsorption can be calculated by knowing the maqnitudes of equilibrium and initial concentration of the surfactant.

کلیدواژه‌ها English

surfactant
Carbonate Rock
Adsorption isotherm
Wettability alteration
1 A. Bera, T. Kumar, K. Ojha, and A. Mandal, "Adsorption of Surfactants on Sand Surface in Enhanced Oil Recovery: Isotherms, kinetics and Thermodynamic Studies," Applied Surface Science, vol. 284- pp. 87-99, 2013.
2 P. A. Siracusa and P. Somasundaran, "The Role of Mineral Dissolution in The Adsorption Of Dodecylbenzenesulfonate on Kaolinite and Alumina," Colloids and surfaces, vol. 26- pp. 55-77, 1987.
3 T. Austad, I. Fjelde, and K. Veggeland, "Adsorption VI. Nonequilibrium Adsorption of Ethoxylated Sulfonate Onto Reservoir Cores In The Presence of Xanthan," Journal of Petroleum Science and Engineering, vol. 12- pp. 1-8, 1994.
4 P. E. Figdore, "Adsorption of Surfactants on Kaolinite: Nacl Versus Cacl2 Salt Effects," Journal of Colloid and Interface Science, vol. 87- pp. 500-517, 1982.
5 P. Somasundaran and R. Grieves, "Advances In Interfacial Phenomena of Particulate/Solution/Gas Systems; applications to flotation research," in AICHE Symposium Series, vol. 71-p. 191, 1975.
6 R. Zhang and P. Somasundaran, "Advances in Adsorption of Surfactants and Their Mixtures at Solid/Solution Interfaces," Advances in colloid and interface science, vol. 123- pp. 213-229, 2006.
7 P. Somasundaran and L. Huang, "Adsorption/Aggregation of Surfactants and Their Mixtures At Solid–Liquid Interfaces," Advances in Colloid and Interface Science, vol. 88- pp. 179-208, 2000.
8 E. Alami, K. Holmberg, and J. Eastoe, "Adsorption Properties of Novel Gemini Surfactants With Nonidentical Head Groups," Journal of colloid and interface science, vol. 247- pp. 447-455, 2002.
9 S. Paria and K. C. Khilar, "A Review on Experimental Studies of Surfactant Adsorption at The Hydrophilic Solid–Water Interface," Advances in colloid and interface science, vol. 110- pp 75-95.2004
10 A. S. Peck and M. E. Wadsworth, "Infrared Study of The Depression Effect of Fluoride, Sulphate And Chloride on The Chemisorption of Oleate on Fluorite and Barite," in 7th International Mineral Processing Congress, New York, 1964, pp. 2
11 R. O. James and T. W. Healy, "Adsorption of Hydrolyzable Metal Ions at The Oxide—Water Interface. III. A Thermodynamic Model of Adsorption," Journal of Colloid and Interface Science, vol. 40- pp. 65-81, 1972.
12 L. Zhang, P. Somasundaran, J. Mielczarski, and E. Mielczarski, "Adsorption Mechanism of N-Dodecyl-Β-D-Maltoside on Alumina," Journal of colloid and interface science, vol. 256- pp. 16-22, 2002.
13 D. Das, S. Panigrahi, P. K. Misra, and A. Nayak, "Effect of Organized Assemblies. Part 4. Formulation of Highly Concentrated Coal− Water Slurry Using A Natural Surfactant," Energy & Fuels, vol. 22- pp. 1865-1872, 2008.
14 S. Dick, D. Fuerstenau, and T. Healy, "Adsorption of Alkylbenzene Sulfonate (ABS) Surfactants at The Alumina-Water Interface," Journal of Colloid and Interface Science, vol. 37- pp. 595-602, 1971.
15 D. Fuerstenau and T. Wakamatsu, "Effect of pH on the Adsorption of Sodium Dodecane-Sulphonate at The Alumina/Water Interface," Faraday Discussions of the Chemical Society, vol. 59- pp. 157-168, 1975.
16 S. H. Wu and P. Pendleton, "Adsorption of Anionic Surfactant by Activated Carbon: Effect of Surface Chemistry, Ionic Strength, and Hydrophobicity," Journal of colloid and interface science, vol. 243- pp. 306-315, 2001.
17 B. Ball and D. Fuerstenau, "Thermodynamics and Adsorption Behaviour in The Quartz/Aqueous Surfactant System," Discussions of the Faraday Society, vol. 52- pp. 361-371, 1971.
18 M. Baviere, E. Ruaux, and D. Defives, "Sulfonate Retention by Kaolinite at High Ph-Effect of Inorganic Anions," SPE reservoir engineering, vol. 8- pp. 123-127, 1993.
19 I. Langmuir, "The Constitution and Fundamental Properties of Solids And Liquids. Part I. Solids," Journal of the American chemical society, vol. 38- pp. 221-2295-1916,
20 I. Langmuir, "The Adsorption of Gases on Plane Surfaces of Glass, Mica And Platinum," Journal of the American Chemical society, vol. 40- pp. 1361-1403, 1918.
21 H. Freundlich, "Over The Adsorption in Solution," J. Phys. Chem, vol. 5- 7pp. 1100-1107, 1906.
22 C. H. Wayman, "Surfactant Sorption on Heteroionic Clay Minerals," in Intern. Clay Conf., Stockholm, 1963, pp. 329-350.
23 K. Mannhardt, L. L. Schramm, and J. J. Novosad, "Adsorption of Anionic And Amphoteric Foam-Forming Surfactants on Different Rock Types," Colloids and surfaces, vol. 68- pp. 37-53, 1992.
24 M. A. Ahmadi and S. R. Shadizadeh, "Adsorption of Novel Nonionic Surfactant and Particles Mixture In Carbonates: Enhanced Oil Recovery Implication," Energy & Fuels, vol. 26- pp. 4655-4663, 2012.
25 S. Emadi, S. R. Shadizadeh, A. K. Manshad, A. M. Rahimi, and A. H. Mohammadi, "Effect of Nano Silica Particles on Interfacial Tension (IFT) and Mobility Control of Natural Surfactant (Cedr Extraction) Solution in Enhanced Oil Recovery Process by Nano-Surfactant Flooding," Journal of Molecular Liquids, vol. 248- pp. 163-167, 2017.
26 Y. Wu, W. Chen, C. Dai, Y. Huang, H. Li, M. Zhao, et al., "Reducing Surfactant Adsorption on Rock By Silica Nanoparticles For Enhanced Oil Recovery," Journal of Petroleum Science and Engineering, vol. 153- pp. 283-287, 2017.
27 G. Cheraghian, "Evaluation of Clay And Fumed Silica Nanoparticles on Adsorption of Surfactant Polymer During Enhanced Oil Recovery," Journal of the Japan Petroleum Institute, vol. 60- pp. 85-94, 2017.
28 A. Barati-Harooni, A. Najafi-Marghmaleki, A. Tatar, and A. H. Mohammadi, "Experimental and Modeling Studies on Adsorption of A Nonionic Surfactant on Sandstone Minerals in Enhanced Oil Recovery Process With Surfactant Flooding," Journal of Molecular Liquids, vol. 220- pp. 1022-1032, 2016.
29 A. Barati, A. Najafi, A. Daryasafar, P. Nadali, and H. Moslehi, "Adsorption of A New Nonionic Surfactant on Carbonate Minerals In Enhanced Oil Recovery: Experimental and Modeling Study," Chemical Engineering Research and Design, vol. 105- pp. 55-63, 2016.
30 J. Clark, "Joint Committee on Powder Diffraction Standards (JCPDS), Card, 1961.
31 T. Tichelkamp, Y. Vu, M. Nourani, and G. Øye, "Interfacial Tension Between Low Salinity Solutions of Sulfonate Surfactants and Crude And Model Oils," Energy & Fuels, vol. 28- pp. 2408-2414, 2014.
32 M. A. Ahmadi and S. R. Shadizadeh, "Experimental Investigation of Adsorption of A New Nonionic Surfactant on Carbonate Minerals," Fuel, vol. 104- pp. 462-467, 2013.