کاربرد نانو ذرات Fe3O4@SiO2 عامل‌دارشده با مولکول‌های گلوکزآمین به‌عنوان جاذب در حذف یون‌ کادمیوم

نویسندگان

1 گروه پژوهشی شیمی و فرایند، پژوهشگاه نیرو، تهران، ایران

2 گروه شیمی، دانشکده علوم، دانشگاه گلستان، گرگان، ایران

چکیده
موضوع تحقیق: در این تحقیق، نانو ذرات هسته-پوسته عامل­دارشده با گلوکزآمین سنتز شد. در ادامه با به‌کارگیری روش­های مشخصه‌یابی، اطمینان از سنتز این نانو ذرات صورت پذیرفت و در نهایت نانو ذرات سنتزی برای اهداف جداسازی فلزات سنگین مورد استفاده قرار گرفت. بدین منظور، نانو ذرات هسته-پوسته مغناطیسی Fe3O4@SiO2 با به‌کارگیری روش­های هم­رسوبی و اشتوبر سنتز شدند. در ادامه نانو ذرات هسته-پوسته با مولکول­های سیانوریک‌کلرید و گلوکزآمین عامل­دار شدند. نانو ذرات عامل­دارشده با مولکول­های گلوکزآمین به‌عنوان جاذبی مؤثر در حذف یون­های فلزی کادمیوم به روش استخراج فاز جامد از محلول­های آبی مورد استفاده قرار گرفتند.

روش تحقیق: ویژگی­های مورفولوژی، اندازه ذرات، خصوصیات ساختاری و رفتار مغناطیسی نانو ذرات در طول مراحل سنتز، با استفاده از روش­های تصویربرداری شامل میکروسکوپ الکترونی عبوری (TEM)، میکروسکوپ الکترونی روبشی (FE-SEM)، توزیع اندازه ذرات (DLS)، پراش پرتو ایکس (XRD)، طیف­سنجی فروسرخ تبدیل فوریه (FT-IR)، آزمون توزین حرارتی (TGA)، پراش انرژی پرتو ایکس (EDX) و مغناطیس­سنج نمونه مرتعش (VSM) مورد بررسی و ارزیابی قرار گرفت. سپس تأثیر پارامترهای مختلف از قبیل دوز جاذب، زمان تماس بر عملکرد جذبی و pH محلول بر میزان جذب مورد بررسی و ارزیابی قرار گرفت.
نتایج اصلی: نتایج نشان می­دهد که بیشینه ظرفیت جذب کادمیوم توسط جاذب (mg/g145) زمانی اتفاق می­افتد که از 15 میلی­گرم جاذب در 50 میلی­لیتر محلول (غلظت اولیه mmol/L4/0) در مدت زمان 18 دقیقه و در 7=pH استفاده شود. علاوه بر این نانوجاذب سنتزی قابلیت بازیافت و استفاده مجدد در فرایندهای جذب-واجذب متوالی برای 6 مرتبه با استفاده از مگنت مغناطیسی بدون کاهش جدی در فعالیت را دارد. نانو ذرات هسته-پوسته عامل­دارشده با گلوکزآمین با توجه به ظرفیت بالای جذب و همچنین قابلیت کاربرد در چرخه­های جذب-واجذب متوالی به‌عنوان روشی ایده­ال برای اهداف تصفیه آب و پساب پیشنهاد می­شود

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Application of Fe3O4@SiO2 nanoparticles functionalized with glucosamine molecules as an adsorbent in removing cadmium ion

نویسندگان English

Mohsen Esmaeilpour 1
Majid Ghahraman Afshar 1
Milad Kazemnejadi 2
1 Chemistry and Process Research Department, Niroo Research Institute (NRI), Tehran, Iran
2 Chemistry Department, Faculty of Sciences, Golestan University, Gorgan, Iran
چکیده English

Research subject: In this study, glucosamine-functionalized core–shell nanoparticles were synthesized. Subsequently, the nanoparticle synthesis was confirmed using various characterization techniques, and the synthesized nanoparticles were applied for heavy metal separation. To this end, Fe3O4@SiO2 magnetic core–shell nanoparticles were synthesized via co-precipitation and Stöber methods. The core–shell nanoparticles were subsequently functionalized with cyanuric chloride and glucosamine. Glucosamine-functionalized nanoparticles were used as effective adsorbents for the removal of cadmium ions from aqueous solutions via solid-phase extraction.

Research approach: Morphological, structural, and magnetic properties, as well as particle size of the nanoparticles during synthesis, were investigated using transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), dynamic light scattering (DLS), and X-ray diffraction (XRD). Additional analyses included Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), energy-dispersive X-ray spectroscopy (EDX), and vibrating sample magnetometry (VSM). Subsequently, the effects of various parameters—including adsorbent dosage, contact time, and solution pH—on adsorption performance were investigated.
Main results: The results indicated that the maximum cadmium adsorption capacity (145 mg/g) was achieved when 15 mg of adsorbent was added to 50 mL of solution with an initial concentration of 0.4 mmol/L over 18 minutes at pH 7. In addition, the synthetic nanoadsorbent was recycled and reused for six consecutive adsorption–desorption cycles using a magnet, without significant loss in adsorption performance. Glucosamine-functionalized core–shell nanoparticles are proposed as a promising technology for water and wastewater treatment, owing to their high adsorption capacity and reusability in sequential adsorption–desorption cycles.

کلیدواژه‌ها English

Core-shell nanoparticles
Glucosamine
cadmium ion
solid phase extraction
Adsorption
1. Patra S., Roy E., Madhuri R., Sharma P. K., Removal and recycling of precious rare earth element from wastewater samples using imprinted magnetic ordered mesoporous carbon, ACS Sustainable Chemistry & Engineering, 5(8), 6910-6923, 2017.
2. Musielak M., Gagor A., Zawisza B., Talik E., Sitko R., Graphene oxide/carbon nanotube membranes for highly efficient removal of metal ions from water, ACS applied materials & interfaces, 11(31), 28582-28590, 2019.
3. Esmaeilpour M., Larimi A., Asgharinezhad A., Ghahramanafshar M., Faghihi M., Silica nanoparticles extracted from rice husk and functionalized with dendrimer as an effective recyclable adsorbent to remove divalent cadmium from aqueous solutions, Journal of Applied Research of Chemical-Polymer Engineering, 6(1), 63-76, 2022.
4. Zhang L., Yang S., Qian J., Hua D., Surface ion-imprinted polypropylene nonwoven fabric for potential uranium seawater extraction with high selectivity over vanadium, Industrial & Engineering Chemistry Research, 56(7), 1860-1867, 2017.
5. Esmaeilpour M., Ghahraman Afshar M., Magnetic Nanoadsorbent: Preparation, characterization, and Adsorption Properties for Removal of Copper (II) from Aqueous Solutions, Applied Chemistry Today, 18(69), 11-20, 2023.
6. Esmaeilpour M., Ghahraman Afshar M., Noroozi Tisseh Z., Ghahremanzadeh R., Removal of copper and chromium ions from aqueous solutions with magnetic nanoparticles functionalized with N-phosphonomethyl amino diacetic acid, Journal of Applied Research of Chemical-Polymer Engineering, 7(1), 33-46, 2023.
7. Zandbaaf S., Khorrami M. R. K., Afshar M. G., Genetic algorithm based artificial neural network and partial least squares regression methods to predict of breakdown voltage for transformer oils samples in power industry using ATR-FTIR spectroscopy, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 273, 120999, 2022.
8. Rahmani-Sani A., Singh P., Raizada P., Lima E. C., Anastopoulos I., Giannakoudakis D. A., Sivamani S., Dontsova T. A., Hosseini-Bandegharaei A., Use of chicken feather and eggshell to synthesize a novel magnetized activated carbon for sorption of heavy metal ions, Bioresource Technology, 297, 122452, 2020.
9. Xu L., Chen J., Wen Y., Li H., Ma J., Fu D., Fast and effective removal of cadmium ion from water using chitosan encapsulated magnetic Fe3O4 nanoparticles, Desalination and Water Treatment, 57(18), 8540-8548, 2016.
10. Niknam E., Naffakh-Moosavy H., Moosavifard S. E., Afshar M. G., Multi-shelled bimetal V-doped Co3O4 hollow spheres derived from metal organic framework for high performance supercapacitors, Journal of Energy Storage, 44, 103508, 2021.
11. Fang L., Xiao X., Kang R., Ren Z., Yu H., Pavlostathis S. G., Luo J., Luo X., Highly selective adsorption of antimonite by novel imprinted polymer with microdomain confinement effect, Journal of Chemical & Engineering Data, 63(5), 1513-1523, 2018.
12. Özdemir S., Yalçın M. S., Kılınç E., Preconcentrations of Ni (II) and Pb (II) from water and food samples by solid-phase extraction using Pleurotus ostreatus immobilized iron oxide nanoparticles, Food Chemistry, 336, 127675, 2021.
13. Esmaeilpour M., Ghahraman Afshar M., Kazemnejadi M., Preparation, characterization, and adsorption properties of bis-salophen schiff base ligand immobilized on Fe3O4@SiO2 nanoparticles for removal of lead (II) from aqueous solutions, Applied Chemistry Today, 18(66), 125-146, 2023.
14. Esmaeilpour M., Larimi A., Ghahramanafshar M., Faghihi M., Ethylenediaminetetraacetic acid coated Fe₃O₄@ SiO₂ nanocomposite: An effective adsorbent for the removal of copper ions from aqueous system, Applied Chemistry Today, 17(65), 45-54, 2023.
15. Larimi A., Esmaeilpour M., Ghahramanafshar M., Faghihi M., Asgharinezhad A., EDTA-functionalized Fe3O4@SiO2 magnetic nanoadsorbent for divalent cadmium removal from aqueous solutions, Journal of Applied Research of Chemical-Polymer Engineering, 5(3), 95-106, 2021.
16. Lam K. F., Yeung K. L., McKay G., Efficient approach for Cd2+ and Ni2+ removal and recovery using mesoporous adsorbent with tunable selectivity, Environmental science & technology, 41(9), 3329-3334, 2007.
17. Soleimani M., Afshar M. G., Highly selective solid phase extraction of mercury ion based on novel ion imprinted polymer and its application to water and fish samples, Journal of Analytical Chemistry, 70, 5-12, 2015.
18. Soleimani M., Ghahraman Afshar M., Sedghi A., Amino‐Functionalization of Multiwall Carbon Nanotubes and Its Use for Solid Phase Extraction of Mercury Ions from Fish Sample, International Scholarly Research Notices, 2013(1), 674289, 2013.
19. Soleimani M., Ghaderi S., Afshar M. G., Soleimani S., Synthesis of molecularly imprinted polymer as a sorbent for solid phase extraction of bovine albumin from whey, milk, urine and serum, Microchemical Journal, 100, 1-7, 2012.
20. Soleimani M., Mahmodi M. S., Morsali A., Khani A., Afshar M. G., Using a new ligand for solid phase extraction of mercury, Journal of hazardous materials, 189(1-2), 371-376, 2011.
21. Norouzian R.-S., Lakouraj M. M., Preparation and heavy metal ion adsorption behavior of novel supermagnetic nanocomposite based on thiacalix [4] arene and polyaniline: conductivity, isotherm and kinetic study, Synthetic Metals, 203, 135-148, 2015.
22. Esmaeilpour M., Sardarian A. R., Jarrahpour A., Ebrahimi E., Javidi J., Synthesis and characterization of β-lactam functionalized superparamagnetic Fe3O4@SiO2 nanoparticles as an approach for improvement of antibacterial activity of β-lactams, RSC Advances, 6(49), 43376-43387, 2016.
23. Ghahramanafshar M., Noroozi T. Z., Ghahremanzadeh R., Esmaeilpour M., Evaluation of the Performance of MnFe2O4 Nanoparticles Functionalized with N-Phosphonomethyl Amino Diacetic Acid as an Effective Magnetic Nanosorbent for the Removal of Ni(II), Pb(II), V(V) Ions from Aqueous Solutions, 2023.
24. Zandbaaf S., Khorrami M. R. K., Afshar M. G., Prediction of dielectric dissipation factor by ATR-FTIR spectroscopy based on multivariate calibration methods for transformer oil samples in power industry, Infrared Physics & Technology, 128, 104528, 2023.
25. Moradi M., Hasanvandian F., Afshar M. G., Larimi A., Khorasheh F., Niknam E., Setayesh S. R., Incorporation of Fe in mixed CoCu-alkoxide hollow sphere for enhancing the electrochemical water oxidation performance, Materials Today Chemistry, 22, 100586, 2021.
26. Kazemnejadi M., Alavi S. A., Rezazadeh Z., Nasseri M. A., Allahresani A., Esmaeilpour M., Fe3O4@SiO2@Im[Cl] Mn(III)-complex as a highly efficient magnetically recoverable nanocatalyst for selective oxidation of alcohol to imine and oxime, Journal of Molecular Structure, 1186, 230-249, 2019.
27. Ray P. C., Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing, Chemical reviews, 110(9), 5332-5365, 2010.
28. Esmaeilpour M., Zahmatkesh S., Fahimi N., Nosratabadi M., Palladium nanoparticles immobilized on EDTA‐modified Fe3O4@SiO2 nanospheres as an efficient and magnetically separable catalyst for Suzuki and Sonogashira cross‐coupling reactions, Applied Organometallic Chemistry, 32(4), e4302, 2018.
29. Zeng T., Yang L., Hudson R., Song G., Moores A. R., Li C.J., Fe3O4 nanoparticle-supported copper (I) pybox catalyst: magnetically recoverable catalyst for enantioselective direct-addition of terminal alkynes to imines, Organic letters, 13(3), 442-445, 2011.
30. Niknam E., Ghahraman Afshar M., Ghaseminejad H., Esamaeilpour M., Pharmaceutical Pollutants Removal by Using Electrochemical Oxidation Technique, Journal of Water and Wastewater; Ab va Fazilab (in persian), 33(4), 71-81, 2022.
31. Niknam E., Naffakh-Moosavy H., Afshar M. G., Electrochemical performance of Nickel foam electrode in Potassium Hydroxide and Sodium Sulfate electrolytes for supercapacitor applications, Journal of Composites and Compounds, 4(12), 149-152, 2022.
32. Safir I., Ngo K. X., Abraham J. N., Afshar M. G., Pavlova E., Nardin C., Synthesis and structure formation in dilute aqueous solution of a chitosan-DNA hybrid, Polymer, 79, 29-36, 2015.
33. Baig R. N., Varma R. S., Magnetically retrievable catalysts for organic synthesis, Chemical Communications, 49(8), 752-770, 2013.
34. Sardarian A. R., Eslahi H., Esmaeilpour M., Green, cost‐effective and efficient procedure for Heck and Sonogashira coupling reactions using palladium nanoparticles supported on functionalized Fe3O4@ SiO2 by polyvinyl alcohol as a highly active, durable and reusable catalyst, Applied Organometallic Chemistry, 33(7), e4856, 2019.
35. Zahmatkesh S., Esmaeilpour M., Javidi J., 1, 4-Dihydroxyanthraquinone–copper(II) supported on superparamagnetic Fe3O4@SiO2: An efficient catalyst for N-arylation of nitrogen heterocycles and alkylamines with aryl halides and click synthesis of 1-aryl-1, 2, 3-triazole derivatives, RSC Advances, 6(93), 90154-90164, 2016.
36. Pankratova N., Crespo G. A., Afshar M. G., Crespi M. C., Jeanneret S., Cherubini T., Tercier-Waeber M.-L., Pomati F., Bakker E., Potentiometric sensing array for monitoring aquatic systems, Environmental Science: Processes & Impacts, 17(5), 906-914, 2015.
37. Inaloo I. D., Majnooni S., Esmaeilpour M., Superparamagnetic Fe3O4 nanoparticles in a deep eutectic solvent: An efficient and recyclable catalytic system for the synthesis of primary carbamates and monosubstituted ureas, European Journal of Organic Chemistry, 2018(26), 3481-3488, 2018.
38. Esmaeilpour M., Javidi J., Fe3O4@SiO2‐imid‐PMAn Magnetic Porous Nanosphere as Reusable Catalyst for Synthesis of Polysubstituted Quinolines under Solvent‐free Conditions, Journal of the Chinese Chemical Society, 62(4), 328-334, 2015.
39. Esmaeilpour M., Sardarian A. R., Firouzabadi H., Theophylline supported on modified silica‐coated magnetite nanoparticles as a novel, efficient, reusable catalyst in green one‐Pot synthesis of spirooxindoles and phenazines, ChemistrySelect, 3(32), 9236-9248, 2018.
40. Kazemnejadi M., Nikookar M., Mohammadi M., Shakeri A., Esmaeilpour M., Melamine-Schiff base/manganese complex with denritic structure: an efficient catalyst for oxidation of alcohols and one-pot synthesis of nitriles, Journal of colloid and interface science, 527, 298-314, 2018.
41. Inaloo I. D., Majnooni S., Eslahi H., Esmaeilpour M., N-Arylation of (hetero) arylamines using aryl sulfamates and carbamates via C-O bond activation enabled by a reusable and durable nickel(0) catalyst, New Journal of Chemistry, 44(31), 13266-13278, 2020.
42. Sardarian A., Kazemnejadi M., Esmaeilpour M., Functionalization of superparamagnetic Fe3O4@SiO2 nanoparticles with a Cu(II) binuclear Schiff base complex as an efficient and reusable
nanomagnetic catalyst for N‐arylation of α‐amino acids and nitrogen‐containing heterocycles with aryl halides, Applied Organometallic Chemistry, 35(1), e6051, 2021.
43. Ahmadi M., Niari M. H., Kakavandi B., Development of maghemite nanoparticles supported on cross-linked chitosan (γ-Fe2O3@CS) as a recoverable mesoporous magnetic composite for effective heavy metals removal, Journal of Molecular Liquids, 248, 184-196, 2017.
44. Huang X., Gao N.Y., Zhang Q.L., Thermodynamics and kinetics of cadmium adsorption onto oxidized granular activated carbon, Journal of Environmental Sciences, 19(11), 1287-1292, 2007.
45. Semerjian L., Equilibrium and kinetics of cadmium adsorption from aqueous solutions using untreated Pinus halepensis sawdust, Journal of hazardous materials, 173(1-3), 236-242, 2010.
46. Lü H., An H., Xie Z., Ion-imprinted carboxymethyl chitosan–silica hybrid sorbent for extraction of cadmium from water samples, International journal of biological macromolecules, 56, 89-93, 2013.
47. Ünlü N., Ersoz M., Removal of heavy metal ions by using dithiocarbamated-sporopollenin, Separation and Purification Technology, 52(3), 461-469, 2007.
48. Rao M. M., Ramana D., Seshaiah K., Wang M., Chien S. C., Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls, Journal of hazardous materials, 166(2-3), 1006-1013, 2009.
49. Azouaou N., Sadaoui Z., Djaafri A., Mokaddem H., Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics, Journal of hazardous materials, 184(1-3), 126-134, 2010.
50. Jaafarzadeh N., Teymouri P., Babaei A. A., Alavi N., Ahmadi M., Biosorption of cadmium(II) from aqueous solution by NaCl-treated Ceratophyllum demersum, Environmental Engineering & Management Journal (EEMJ), 13(4), 2014.
51. Wang Z., Shen D., Shen F., Wu C., Gu S., Equilibrium, kinetics and thermodynamics of cadmium ions (Cd2+) removal from aqueous solution using earthworm manure-derived carbon materials, Journal of Molecular Liquids, 241, 612-621, 2017.
52. Naiya T., Bhattacharya A., Das S., Removal of Cd(II) from aqueous solutions using clarified sludge, Journal of colloid and interface science, 325(1), 48-56, 2008.
53. Kuo C.Y., Lin H.Y., Adsorption of aqueous cadmium(II) onto modified multi-walled carbon nanotubes following microwave/chemical treatment, Desalination, 249(2), 792-796, 2009.
54. Wang Z., Nie E., Li J., Zhao Y., Luo X., Zheng Z., Carbons prepared from Spartina alterniflora and its anaerobically digested residue by H3PO4 activation: Characterization and adsorption of cadmium from aqueous solutions, Journal of hazardous materials, 188(1-3), 29-36, 2011.
55. Liang J., Liu J., Yuan X., Dong H., Zeng G., Wu H., Wang H., Liu J., Hua S., Zhang S., Facile synthesis of alumina-decorated multi-walled carbon nanotubes for simultaneous adsorption of cadmium ion and trichloroethylene, Chemical Engineering Journal, 273, 101-110, 2015.
56. Tajar A. F., Kaghazchi T., Soleimani M., Adsorption of cadmium from aqueous solutions on sulfurized activated carbon prepared from nut shells, Journal of hazardous materials, 165(1-3), 1159-1164, 2009.
57. Molino A., Erto A., Natale F. D., Donatelli A., Iovane P., Musmarra D., Gasification of granulated scrap tires for the production of syngas and a low-cost adsorbent for Cd(II) removal from wastewaters, Industrial & Engineering Chemistry Research, 52(34), 12154-12160, 2013.