بررسی عملکرد غشای مایع پشتیبانی‌شده پبکس/ حلال‌های یوتکتیک عمیق در جداسازی گاز دی‌اکسیدکربن

نوع مقاله : پژوهشی اصیل

نویسندگان

آزمایشگاه ازدیاد برداشت نفت و فرآیندهای گاز، دانشکده مهندسی شیمی، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران

چکیده
چکیده

موضوع تحقیق:

استفاده از حلال‌های یوتکتیک عمیق (DES) برای بهبود عملکرد غشاهای پلیمری در جداسازی گاز CO2مورد توجه قرار گرفته است. غشاهایی که با استفاده از DES اصلاح می‌شوند، به‌عنوان غشاهای مایع پشتیبانی‌شده (SLM) شناخته می‌شوند.

روش تحقیق:

در این پژوهش، حلال‌های دوجزئی کولین‌کلرید/ اوره و سه‌جزئی کولین‌کلرید/ اوره/ DBU به‌عنوان DES برای بهبود کارایی غشای پلی(‌اتر-قطعه-آمید) (Pebax-1657) در جداسازی گاز CO2 از CH4 و N2استفاده شده‌ است. غشاها به روش تبخیر حلال ساخته شده، با روش‌های مختلف مورد ارزیابی قرار گرفتند.

نتایج اصلی:

نتایج آزمون گاز تراوایی در فشار 2 بار و دمای °C 30 نشان داد که تراوائی گاز CO2 از barrer3/77 در غشای خالص به barrer4/96 در غشای حاوی 10% DES دوجزئی و barrer 7/101 در غشای حاوی 10% DES-DBU سه‌جزئی افزایش یافته است. گزینش‌پذیری‌های CO2/N2 و CO2/CH4 به‌ترتیب از 20/32 و 36/11 در غشای خالص به 56/38 و 77/13 در غشای 10% DES دوجزئی و 68/40 و 32/14 در غشای %10 DES سه‌جزئی بهبود یافت. با افزایش فشار خوراک عملکرد غشاها ارتقا یافت؛ به‌طوری‌که در فشار 10 بار در غشای 10% DES سه‌جزئی تراوئی CO2 به barrer 8/162و گزینش‌پذیری CO2/N2 و CO2/CH4 به 13/56 و60/20 افزایش یافته است. با توجه به اینکه غشای DES سه‌جزئی عملکرد بهتری داشته است، در نهایت درصدهای وزنی مختلفی از DES-DBU در غشای Pebax مورد استفاده قرار گرفت. نتایج به‌دست‌آمده نشان داد که غشای حاوی ۲۰ درصد وزنی DES سه‌جزئی، بهترین عملکرد را در مقایسه با سایر غشاها داشته است. این غشا در فشار ۲ بار و دمای °C 30، تراوایی گاز CO2را به barrer8/138 و گزینش‌پذیریCO2/N2 و CO2/N2 را به‌ترتیب به ۴۶/51 و 80/18 افزایش داده است. با افزایش فشار به ۱۰ بار، تراوایی CO2 به مقدار barrer 5/212 و گزینش‌پذیری گازهای CO2/N2 و CO2/CH4به‌ترتیب به ۶۶/۴۰ و ۲۵/۶۰ ارتقا یافت که در نهایت این غشا در مقایسه با سایر مطالعات انجام‌شده موفق به عبور از حد رابسون شده است که نشان‌دهنده پتانسیل بالای این غشا در کاربردهای مرتبط با جداسازی گاز CO2 است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Performance evaluation of Pebax/ deep eutectic solvent supported liquid membrane in carbon dioxide separation

نویسندگان English

Abolfazl Ghavami
Reza Abedini
EOR and Gas Processing Research Lab., Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
چکیده English

Abstract:

Research subject:

The use of deep eutectic solvents (DES) as an effective approach to enhance the performance of polymer membranes in CO2 gas separation has gained significant attention. Membranes modified with DES are referred to as supported liquid membranes (SLMs).

Research approach:

In this study, two-component (choline chloride/urea) and three-component (choline chloride/urea/DBU) DES were used to improve the efficiency of Pebax-1657 (poly(ether-block-amide)) membranes for separating CO2 from CH4 and N2 gases. Gas permeability tests conducted at 2 bar pressure and 30 °C compared pure membranes with membranes enhanced by 10 wt.% of the two-component DES and 10 wt.% of the three-component DES.

Results:

Results showed that the CO2 permeability increased from 3.77 barrer for the pure membrane to 4.96 barrer for the 10 wt.% DES two-component membrane, and to 7.101 barrer for the 10 wt.% DES-DBU three-component membrane. The CO2/N2 and CO2/CH4 selectivities improved from 20.32 and 11.36 for the pure membrane to 38.56 and 13.77 for the DES two-component membrane, and to 40.68 and 14.32 for DES-DBU three-component membrane, respectively. Moreover, with an increase in feed pressure from 2 bar to 6 and 10 bar, the membrane performance improved. At 10 bar, the CO2 permeability for the 10 wt.% DES three-component membrane increased to 16.28 barrer, while the CO2/N2 and CO2/CH4 selectivities rose to 56.13 and 20.60, respectively. Since the DES-DBU three-component membrane showed better performance than the DES two-component membrane and the pure membrane, various weight percentages of this composition were used to further enhance the Pebax polymer membrane. The results indicated that the membrane containing 20 wt.% of the DES-DBU three-component exhibited the best performance among all tested membranes. At 2 bar pressure and 30 °C, this membrane increased CO2 permeability to 13.88 barrer and CO2/N2 and CO2/CH4 selectivities to 51.46 and 18.80, respectively. Furthermore, at 10 bar pressure, the CO2 permeability reached 21.25 barrer, while the CO2/N2 and CO2/CH4 selectivities improved to 40.66 and 60.25, respectively. Ultimately, this membrane, compared to other studies, has successfully surpassed the Robeson limit, demonstrating its high potential for applications related to CO2 gas separation.

کلیدواژه‌ها English

Supported liquid membrane
Carbon dioxide separation
permeability
Selectivity
Deep Eutectic Solvent
[1] Nematollahi M.H., Babaei S., and Abedini R., CO2 Separation over Light Gases for Nano-Composite Membrane Comprising Modified Polyurethane with SiO2 Nanoparticles, Korean Journal of Chemical Engineering, 36, 763-779, 2019.
[2] Salestan S.K., Pirzadeh K., Rahimpour A., and Abedini R., Poly (ether-block amide) Thin-Film Membranes Containing Functionalized MIL-101 MOFs for Efficient Separation of CO2/CH4, Journal of Environmental Chemical Engineering, 9, 105820, 2021.
[3] Fakoori M., Azdarpour A., Abedini R., and Honarvar B., Effect of Cu-MOFs Incorporation on Gas Separation of Pebax Thin film Nanocomposite (TFN) Membrane, Korean Journal of Chemical Engineering, 38, 121-128, 2021.
[4] Uchytil P., Schauer J., Petrychkovych R., Setnickova K., and Suen S.Y., Ionic liquid Membranes for Carbon dioxide–Methane Separation, Journal of Membrane Science, 383(1-2), 262-271, 2011.
[5] Malik., Hashim M.A., and Nabi F., Ionic Liquids in Supported Liquid Membrane Technology, Chemical Engineering Journal, 171(1), 242-254, 2011.
[6] Chen D., Wang W., Ying W., Guo Y., Meng D., Yan Y., Yan R., and Peng X., CO2-Philic WS2 Laminated Membranes with a Nanoconfined Ionic Liquid, Journal of Materials Chemistry A, 6(34), 16566-16573, 2018.
[7] Paduszynski K., and Domanska U., Viscosity of Ionic liquids: an Extensive Database and a New Group Contribution Model based on a Feed-Forward Artificial Neural Network, Journal of Chemical Information and Modeling, 54(5), 1311-1324, 2014.
[8] Smiglak M., Reichert W.M., Holbrey J.D., Wilkes J.S., Sun L., Thrasher J.S., Kirichenko K., and Singh S., Combustible Ionic Liquids by Design: is Laboratory Safety another Ionic Liquid Myth?, Chemical Communications, (24), 2554-2556, 2006.
[9] Peric B., Sierra J., Martí E., Cruañas R., Garau M.A., Arning J., Bottin-Weber U., and Stolte S., (Eco) Toxicity and Biodegradability of Selected Protic and Aprotic Ionic Liquids, Journal of Hazardous Materials, 261, 99-105, 2013.
[10] García G., Aparicio S., Ullah R., and Atilhan M., Deep Eutectic Solvents: Physicochemical Properties And Gas Separation Applications, Energy & Fuels, 29(4), 2616-2644, 2015.
[11] Abbott A.P., Capper G., Davies D.L., Rasheed R.K., and Tambyrajah V., Novel Solvent Properties of Choline Chloride/Urea Mixtures, Chemical Communications, 34, 70-76, 2003.
[12] Sarmad S., Mikkola J.P., and Ji X., Carbon Dioxide Capture with Ionic Liquids and Deep Eutectic Solvents: a New Generation of Sorbents, ChemSusChem,10(2), 324-352, 2017.
[13] Abbott A.P., Barron J.C., KS Ryder., and Wilson D., Eutectic‐based Ionic Liquids with Metal‐Containing Anions and Cations, Chemistry–A European Journal, 13(22), 6495-6501, 2007.
[14] Mannu A., Blangetti M., Baldino S., and Prandi C., Promising Technological and Industrial Applications of Deep Eutectic Systems, Materials, 14, 2494-2508, 2021,
[15] Abranches D.O., Martins M.A.R., Silva L.P., Schaeffer N., Pinho S.P., and Coutinho J.A.P‏., Phenolic Hydrogen Bond Donors in the Formation of Non-Ionic Deep Eutectic Solvents: the Quest for Type V DES, Chemical Communications, 55(69), 10253-10256, 2019.
[16] Nowosielski B., Warminska D., and Cichowska-Kopczynska I., CO2 Separation Using Supported Deep Eutectic Liquid Membranes Based on 1,2-Propanediol, ACS Sustainable Chemistry & Engineering, 11(10), 4093-4105, 2023.
[17] Cui G., Liu J., Lyu S., Wang H., Li Z., and Wang J., Efficient and Reversible SO2 Absorption by Environmentally Friendly Task-Specific Deep Eutectic Solvents of PPZBr+ Gly, ACS Sustainable, Journal of Chemistry & Engineering,7(16), 14236-14246, 2019.
[18] Perkins S.L., Painter P., and Colina C.M., Experimental and Computational Studies of Choline Chloride-Based Deep Eutectic Solvents, Journal of Chemical & Engineering Data, 59(11), 3652-3662, 2014.
[19] Islam S.Z., Arifuzzaman M., Rother G., Bocharova V., Sacci R.L., Jakowski J., Huang J., and Ivanov I.N., A Membrane Contactor Enabling Energy-Efficient CO2 Capture from Point Sources with Deep Eutectic Solvents, Industrial & Engineering Chemistry Research, 62(10), 4455-4465, 2023.
[20] Saeed U., Khan A.L., Gilani M.A., Bilad M.R., and Khan A.U‏., Supported Liquid Membranes Comprising of Choline Chloride based Deep Eutectic Solvents for CO2 Capture: Influence of Organic Acids as Hydrogen Bond Donor, Journal of Molecular Liquids, 335, 116155, 2021.
[21] Ishaq M., Gilani M.A., Ahmad F., Afzal Z.M., Arshad I., Bilad M.R., Ayub K., and Khan A.L‏., Theoretical and Experimental Investigation of CO2 Capture Through Choline Chloride Based Supported Deep Eutectic Liquid Membranes, Journal of Molecular Liquids, 335, 116234, 2021.
[22] Kheirtalab M., Abedini R., and Ghorbani M., Investigation of Performance of Pebax/Poly(vinyl alcohol) Blend Membrane for Carbon Dioxide Separation from Nitrogen, Journal of Applied Research of Chemical -Polymer Engineering, 3, 57-71, 2020.
[23] Li M., Zhang X., Zeng S., Gao H., Deng J., Yang Q., and Zhang S., Pebax Based Composite Membranes with High Gas Transport Properties Enhanced by Ionic Liquids for CO2 Separation, RSC Advances,7, 6422-6431, 2017.
[24] Ranjbar F., Ghorbani M., Abedini R., and Ghasemi M., Thin film Nanocomposite (TFN) Membrane Comprising Pebax® 1657 and Porous Organic Polymers (POP) for Favored CO2 Separation, Journal of Membrane Science and Research, 8 (3), 535579, 2022.
[25] Jamshidi M., Pirouzfar V., Abedini R., and Pedram M.Z., The Influence of Nanoparticles on Gas Transport Properties of Mixed Matrix Membranes: Experimental Investigation and Modeling, Korean Journal of Chemical Engineering, 34, 829-843, 2017.
[26] Ullah R., Atilhan M., Anaya B., Khraisheh M., García G., ElKhattat A., Tariq M., and Aparicio S., A Detailed Study of Cholinium Chloride and Levulinic Acid Deep Eutectic Solvent System for CO2 Capture via Experimental and Molecular Simulation Approaches, Physical Chemistry Chemical Physics,17(32), 20941-20960, 2015.
[27] Jiang B., Ma J., Yang N., Huang Z., Zhang N., Tantai X., Sun Y., and Zhang‏ L., Superbase/Acylamido-Based Deep Eutectic Solvents for Multiple-site Efficient CO2 Absorption, Energy & Fuels, 33(8), 7569-7577, 2019.
[28] Shahrezaei K., Abedini R., Lashkarbolooki M., and Rahimpour A., A Preferential CO2 Separation Using Binary Phases Membrane Consisting of Pebax®1657 and [Omim][PF6] Ionic Liquid, Korean Journal of Chemical Engineering, 36, 2085-2094, 2019.
[29] Hosseinzadeh Beiragh H., Omidkhah M., Abedini R., Khosravi S., and Pakseresh S., Synthesis and Characterization of Poly (ether‐block‐amide) Mixed Matrix Membranes Incorporated by Nanoporous ZSM‐5 Particles for CO2/CH4 Separation. Asia‐Pacific Journal of Chemical Engineering, 11(4), 522-532, 2016.
[30] Nobakht D., and Abedini R., A New Ternary Pebax® 1657/Maltitol/ZIF-8 Mixed Matrix Membrane for Efficient CO2 Separation, Process Safety and Environmental Protection,170, 709-719, 2023.
[31] Lian S., Li R., Zhang Z., Liu Q., Song C., and Lu S., Improved CO2 Separation Performance and Interfacial Affinity of Composite Membranes by Incorporating Amino Acid-Based Deep Eutectic Solvents, Separation and Purification Technology, 272, 1383-5866, 2021.
[32] Kheirtalab M., Abedini R., and Ghorbani M., A Novel Ternary Mixed Matrix Membrane Comprising Polyvinyl Alcohol (PVA)-Modified Poly (Ether-Block-Amide) (Pebax®1657)/Graphene Oxide Nanoparticles for CO2 Separation, Process Safety and Environmental Protection, 144, 208-224, 2024
[33] Khalilinejad I., Kargari A., and Sanaeepur H., Preparation and Characterization of (Pebax 1657+ Silica Nanoparticle)/PVC Mixed Matrix Composite Membrane for CO2/N2 Separation, Chemical Papers, 71, 803-818, 2017.
[34] Kheirtalab M., Abedini R., and Ghorbani M., Pebax/Poly (vinyl Alcohol) Mixed Matrix Membrane Incorporated by Amine‐Functionalized Graphene Oxide for CO2 Separation, Journal of Polymer Science, 62, 517-535, 2024.
[35] García G., Atilhan M., and Aparicio S., A Theoretical Study on Mitigation of CO2 through Advanced Deep Eutectic Solvents, International Journal of Greenhouse Gas Control, 39, 62-73, 2015.
[36] Garcia, G., Atilhan M., and Aparicio S., Interfacial Properties of Deep Eutectic Solvents Regarding to CO2 Capture, The Journal of Physical Chemistry, 119(37), 21413-21425, 2015.
[37] Mozafari M., Rahimpour A., and Abedini R., Exploiting the Effects of Zirconium-Based Metal Organic Framework Decorated Carbon Nanofibers to Improve CO2/CH4 Separation Performance of Thin Film Nanocomposite Membranes, Journal of Industrial and Engineering Chemistry, 85, 102-110, 2020.
[38] Nematollahi M.H., Carvalho P.J., Coutinho J.A.P., and Abedini R., Recent Progress on Pebax-based Thin Film Nanocomposite Membranes for CO2 Capture: State of the Art and Future Outlooks, Energy & Fuels, 36, 12367–12428, 2022.
[39] Nematollahi M.H., Carvalho P.J., Coutinho J.A.P., and Abedini R., Tailoring the CO2 Permeation of Pebax1657/Polyether Imide Thin Film Composite Membrane via Embedding Ag-Based Metal-Organic Framework, Chemical Engineering Research and Design, 197, 109-126, 2023.
[40] Trivedi TJ., Lee JH., Lee HJ., Jeong YK., and Choi JW‏., Deep Eutectic Solvents as Attractive Media for CO2 Capture, Green Chemistry, 18(9), 2834-2842, 2016.
[41] Ghaedi H., Ayoub M., Sufian S., Shariff A.M., Hailegiorgis SM., Khan SN ‏., CO2 Capture with the Help of Phosphonium-Based Deep Eutectic Solvents, Journal of Molecular Liquids, 243, 564-571, 2017.
[42] Ranjbar F., Abedini R., Ghorbani M., and Ghasemi M., The Experimental/Theoretical Study over the Effect of Using the POP-NH2 Nanostructures into the Membrane Selective Layer on the CO2 Permeability and Selectivity, Chemical Engineering Research and Design, 187, 184-195, 2022.
[43] Sanaeepur H., Mashhadikhan S., Mardassi G., Ebadi Amooghin A., Van der Bruggen B., and Moghadassi A., Aminosilane Cross-Linked Poly Ether-Block-Amide Pebax 2533: Characterization and CO2 Separation Properties, Korean Journal of Chemical Engineering, 36, 1339-1349, 2019.
[44] Nafisi V., and Hagg M.B., Development of Dual Layer of ZIF-8/Pebax-2533 Mixed Matrix Membrane for CO2 Capture, Journal of Membrane Science, 459, 244-255, (2014)
[45] Car A., Stropnik C., Yave W., and Peinemann‏ K.V., PEG Modified Poly (Amide-b-Ethylene Oxide) Membranes for CO2 Separation, Journal of Membrane Science, 307(1), 88-95, 2008.
[46] ] Rodríguez L., Mar M., Iglesias M., Maya E., Effect of Porous Organic Polymers in Gas Separation Properties of Polycarbonate Based Mixed Matrix Membranes, Journal of Membrane Science, 619, 118795, 2021.