1. Farag M. M., Liu H. H., & Makhlouf A. H. New nano-bioactive glass/magnesium phosphate composites by sol-gel route for bone defect treatment. Silicon, 13, 857-865, 2021.
2. Ghomi F., Asefnejad A., Daliri M., Godarzi V., & Hemati, M. Fabrication and characterization of chitosan/gelatin scaffold with bioactive glass reinforcement using PRP to regenerate bone tissue. Nanomedicine Research Journal, 7(2), 205-213,2022.
3. Raz M., Moztarzadeh F., & Kordestani, S. S. Sol-gel based fabrication and properties of Mg-Zn doped bioactive glass/gelatin composite scaffold for bone tissue engineering. Silicon, 10, 667-674, 2018.
4. Sharifi S., Ebrahimian-Hosseinabadi M., Dini G., & Toghyani, S. Magnesium-zinc-graphene oxide nanocomposite scaffolds for bone tissue engineering. Arabian Journal of Chemistry, 16(6), 104715,2023.
5. Zhu G., Zhang T., Chen M., Yao K., Huang X., Zhang B., ... & Zhao Z. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioactive materials, 6(11), 4110-4140,2021.
6. Safari B., Davaran S., & Aghanejad A. Osteogenic potential of the growth factors and bioactive molecules in bone regeneration. International journal of biological macromolecules, 175, 544-557,2021.
7. Guyton A. C., & Hall J. E. Fisiologia médica. Elsevier srl. 2006.
8. Sonatkar J., & Kandasubramanian B. Bioactive glass with biocompatible polymers for bone applications. European Polymer Journal, 160, 110801, 2021.
9. Sergi R., Bellucci D., & Cannillo V. A review of bioactive glass/natural polymer composites: State of the art. Materials, 13(23), 5560, 2020.
10. Newman H., Shih Y. V., & Varghese S. Resolution of inflammation in bone regeneration: From understandings to therapeutic, applications. Biomaterials ,277, 121114, 2021.
11. Safari B., Davaran S., & Aghanejad A. Osteogenic potential of the growth factors and bioactive molecules in bone regeneration. International journal of biological macromolecules, 175, 544-557, 2021.
12. Liang W., Wu X., Dong Y., Shao R., Chen X., Zhou P., & Xu F. In vivo behavior of bioactive glass-based composites in animal models for bone regeneration. Biomaterials Science, 9(6), 1924-1944, 2021.
13. Gupta N., & Santhiya D. In situ mineralization of bioactive glass in gelatin matrix. Materials Letters, 188, 127-129, 2017.
14. Jain S., Gujjala R., Azeem P. A., Ojha S., & Samudrala R. K. A review on mechanical and In-vitro studies of polymer reinforced bioactive glass-scaffolds and their fabrication techniques. Ceramics International, 48(5), 5908-5921, 2022.
15. Sharifi E., Sadati S. A., Yousefiasl S., Sartorius, R., Zafari, M., Rezakhani, L., ... & Makvandi, P. Cell loaded hydrogel containing Ag‐doped bioactive glass–ceramic nanoparticles as skin substitute: Antibacterial properties, immune response, and scarless cutaneous wound regeneration. Bioengineering & Translational Medicine, 7(3), e10386, 2022.
16. Yao L., Gao H., Lin Z., Dai Q., Zhu S., Li S., ... & Cao X. A shape memory and antibacterial cryogel with rapid hemostasis for noncompressible hemorrhage and wound healing. Chemical Engineering Journal, 428, 131005, 2022.
17. Afghah F., Iyison N. B., Nadernezhad A., Midi A., Sen O., Saner Okan B., ... & Koc B. 3D fiber reinforced hydrogel scaffolds by melt electrowriting and gel casting as a hybrid design for wound healing. Advanced Healthcare Materials, 11(11), 2102068, 2022.
18. Begines B., Arevalo C., Romero C., Hadzhieva Z., Boccaccini A. R., & Torres Y. Fabrication and Characterization of Bioactive Gelatin–Alginate–Bioactive Glass Composite Coatings on Porous Titanium Substrates. ACS Applied Materials & Interfaces, 14(13), 15008-15020, 2022.
19. Karadjian M., Essers C., Tsitlakidis S., Reible B., Moghaddam A., Boccaccini A. R., & Westhauser F. Biological properties of calcium phosphate bioactive glass composite bone substitutes: Current experimental evidence. International journal of molecular sciences, 20(2), 305, 2019.
20. Rahmani M., Moghanian A., & Yazdi M. S. The effect of Ag substitution on physicochemical and biological properties of sol-gel derived 60% SiO2–31% CaO–4% P2O5–5% Li2O (mol%) quaternary bioactive glass. Ceramics International, 47(11), 15985-15994, 2021.
21. Montazerian M., Zanotto E. D., & Mauro J. C. Model-driven design of bioactive glasses: from molecular dynamics through machine learning. International Materials Reviews, 65(5), 297-321, 2020.
22. Goudarzi G, Dadashian F, Vatanara A, Sepehrizadeh Z. Optimization of Keratin Sponge Preparation Conditions for Hemostatic Application Using Response Surface Methodology (RSM). Journal of Polymers and the Environment, 32(3):1135-49, 2024.
23. Mehrabi T., Mesgar A. S., & Mohammadi Z. Bioactive glasses: a promising therapeutic ion release strategy for enhancing wound healing. ACS Biomaterials Science & Engineering, 6(10), 5399-5430, 2020.
24. Elkhouly H., Mamdouh W., & El-Korashy D. I. Electrospun nano-fibrous bilayer scaffold prepared from polycaprolactone/gelatin and bioactive glass for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 32(9), 111, 2021.