بررسی تاثیر پارامترهای عملیاتی بر روی تزریق دی اکسید کربن و گاز ترش به عنوان گاز پایه در فرایند ذخیره سازی زیرزمینی گاز هیدروژن

نوع مقاله : پژوهشی اصیل

نویسندگان

1 گروه مهندسی نفت، دانشکده مهندسی شیمی، دانشگاه تربیت مدرس، تهران، ایران

2 شرکت مهندسی و توسعه نفت، تهران، ایران

چکیده
موضوع تحقیق: عدم تعادل میان عرضه و تقاضا یکی از موانع اصلی در فرایند جایگزین کردن انرژی‌های تجدید پذیر به جای سوخت‌های فسیلی است. ذخیره سازی زیرزمینی گاز هیدروژن بدست آمده از منابع تجدید پذیر، روشی مناسب برای ذخیره انرژی حاصل از این منابع است. از طرفی با توجه به آن که در زمان ذخیره زیرزمینی گاز همواره بخشی از آن به عنوان گاز پایه درون مخزن باقی می‌ماند، توصیه می‌شود برای کاهش هزینه‌های عملیاتی این گاز با گازهای ارزان همچون گاز CO2 و گاز ترش جایگزین شود. اما در این حالت خلوص و ضریب بازیافت هیدروژن برداشت شده از مخزن از جمله عواملی هستند که تحت تاثیر قرار می‌گیرند که امکان کنترل آنها توسط پارامترهای عملیاتی وجود دارد. از این رو در این مطالعه به بررسی آنها پرداخته خواهد شد.

روش تحقیق: در این قسمت ابتدا مدل یک مخزن گازی نیمه تخلیه شده توسط شبیه ساز تجاریCMG ساخته شد و پس از صحت سنجی مدل، از آن به منظور بررسی پارامترهای مورد نظر استفاده شد. برای این امر پس از تخلیه‌ی 50% مخزن، به مدت یک سال گاز پایه تزریق شده و سپس برای مدت 10 سال ذخیره سازی هیدروژن صورت گرفت. در این پژوهش تاثیر پارامترهای مدت زمان و نرخ تزریق و تولید هیدروژن، مدت زمان تزریق و زمان ماند گاز پایه، استفاده از گاز ترش به عنوان گاز پایه و درصد H2S موجود در آن بر روی خلوص و ضریب بازیافت هیدروژن مورد بررسی قرار گرفت.

نتایج اصلی: نتایج بدست آمده نشان داد افزایش نرخ تزریق و تولید هیدروژن باعث افزایش خلوص و ضریب بازیافت آن می‌شود. کاهش دوره تزریق و افزایش دوره برداشت موجب کاهش خلوص و افزایش ضریب بازیافت هیدروژن میشود، مشروط بر اینکه دوره برداشت از دوره تزریق بیشتر نشود. افزایش زمان تزریق گاز پایه و فاصله زمانی بین تزریق و ذخیره‌سازی، به خلوص و بازیافت هیدروژن کمک می‌کند. همچنین، در ترکیب گاز پایه، افزایش سهم H2S به بالای 70% در ترکیب گاز پایه، خلوص و بازیافت هیدروژن را به ترتیب حدود 2 و 3 درصد کاهش می‌دهد که این امر امکان استفاده از H2S را به‌عنوان گاز پایه تایید می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of Operating Parameters on the Injection of Carbon Dioxide and Sour Gas as Cushion Gas in the Process of Underground Hydrogen Gas Storage

نویسندگان English

Mohammad Ramsari 1
Arezou Jafari 1
Hamed Namdar 1
Davood Khoozan 1
Aras Roomi 2
1 Petroleum Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
2 Petroleum Engineering and Development Company (PEDEC), Tehran, Iran
چکیده English

Research topic:

The disparity between supply and demand is one of the main obstacles in transitioning from fossil fuels to renewable energy. Underground hydrogen storage derived from renewable sources is a suitable method for storing energy from these sources. However, a portion of the stored gas remains in the reservoir as cushion gas, which can add to the operational costs. It is therefore recommended to replace this cushion gas with less expensive alternatives, such as CO2 or sour gas, to reduce these costs. Nevertheless, this replacement can affect the purity and recovery factor of hydrogen, which can be controlled by specific operating parameters. This study will investigate how these parameters can be adjusted to maintain high purity and recovery factor for stored hydrogen.

Research Method:

In this section, a model of a partially depleted gas reservoir was initially constructed using the commercial simulator CMG. Following validation, this model was employed to evaluate the desired parameters. For this purpose, approximately 50% of the reservoir was depleted initially, followed by the injection of the cushion gas for one year. Subsequently, the hydrogen storage process was conducted over a period of 10 years. This research investigates the impact of various parameters, including the duration and rate of hydrogen injection and production, the soaking time and duration of cushion gas injection, the utilization of sour gas as the cushion gas, and the concentration of H2S within it, on the purity and recovery factor of the produced hydrogen.

Main results:

The results showed that increasing the rate of hydrogen injection and production enhances its purity and recovery factor. Reducing the injection period while increasing the extraction period decreases purity but improves recovery, provided that the extraction period does not exceed the injection period. Extending the cushion gas injection time and the interval between injection and hydrogen storage supports the purity and recovery factor of hydrogen. Additionally, in the cushion gas composition, increasing the proportion of H2S above 70% in the sour gas mixture reduces hydrogen purity and recovery by approximately 2% and 3%, respectively, confirming the potential of H2S as a cushion gas.

کلیدواژه‌ها English

Underground hydrogen gas storage
Cushion gas
Sour gas
Renewable Energy
energy storage
1. Tarkowski, R., Underground hydrogen storage: Characteristics and prospects. Renewable and Sustainable Energy Reviews, 2019. 105: p. 86-94.
2. Seo, S.-K., D.-Y. Yun, and C.-J. Lee, Design and optimization of a hydrogen supply chain using a centralized storage model. Applied energy, 2020. 262: p. 114452.
3. Bai, M., et al., An overview of hydrogen underground storage technology and prospects in China. Journal of Petroleum Science and Engineering, 2014. 124: p. 132-136.
4. Crotogino, F., et al., Large-Scale Hydrogen Underground Storage for Securing Future Energy Supplies. 2010.
5. Zivar, D., S. Kumar, and J. Foroozesh, Underground hydrogen storage: A comprehensive review. International journal of hydrogen energy, 2021. 46(45): p. 23436-23462.
6. Muhammed, N.S., et al., Hydrogen storage in depleted gas reservoirs: A comprehensive review. Fuel, 2023. 337: p. 127032.
7. Shin, C. and J. Lee, A numerical study on the compositional variation and the validity of conversion of a gas condensate reservoir into underground storage. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2011. 33(20): p. 1921-1932.
8. Stopa, J., et al. Technical and economic performance of the underground gas storage in low quality gas reservoir. in 24th World Gas conference, Argentina. 2009.
9. Namdar, H., E. Khodapanah, and S.A. Tabatabaei-Nejad, Comparison of base gas replacement using nitrogen, flue gas and air during underground natural gas storage in a depleted gas reservoir. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020. 42(22): p. 2778-2793.
10. Muhammed, N.S., B. Haq, and D. Al Shehri, Role of methane as a cushion gas for hydrogen storage in depleted gas reservoirs. International Journal of Hydrogen Energy, 2023. 48(76): p. 29663-29681.
11. Zhao, Q., Y. Wang, and C. Chen, Numerical simulation of the impact of different cushion gases on underground hydrogen storage in aquifers based on an experimentally-benchmarked equation-of-state. International Journal of Hydrogen Energy, 2023.
12. Saeed, M. and P. Jadhawar, Optimizing underground hydrogen storage in aquifers: The impact of cushion gas type. International Journal of Hydrogen Energy, 2023.
13. Kanaani, M., B. Sedaee, and M. Asadian-Pakfar, Role of cushion gas on underground hydrogen storage in depleted oil reservoirs. Journal of Energy Storage, 2022. 45: p. 103783.
14. Lysyy, M., M. Fernø, and G. Ersland, Seasonal hydrogen storage in a depleted oil and gas field. International Journal of Hydrogen Energy, 2021. 46(49): p. 25160-25174.
15. Zamehrian, M. and B. Sedaee, Underground hydrogen storage in a partially depleted gas condensate reservoir: influence of cushion gas. Journal of Petroleum Science and Engineering, 2022. 212: p. 110304.
16. Peng, D.-y. and D. Robinson, New Two-Constant Equation of State. Industrial & Engineering Chemistry Fundamentals, 1976. 15.
17. Twu, C.H., An internally consistent correlation for predicting the critical properties and molecular weights of petroleum and coal-tar liquids. Fluid Phase Equilibria, 1984. 16(2): p. 137-150.
18. Buenrostro‐Gonzalez, E., et al., Asphaltene precipitation in crude oils: Theory and experiments. AIChE Journal, 2004. 50(10): p. 2552-2570.
19. Reid, R.C., J.M. Prausnitz, and B.E. Poling, The Properties of Gases and Liquids. 1987: McGraw-Hill.
20. Sander, R., Compilation of Henry’s law constants (Version 4.0) for water as solvent. Atmospheric Chemistry and Physics, 2015. 15: p. 4399-4981.
21. Nejat, T., et al., Simulated exergy and energy performance comparison of physical–chemical and chemical solvents in a sour gas treatment plant. Chemical Engineering Research and Design, 2018. 133: p. 40-54.
22. Shoushtari, S., H. Namdar, and A. Jafari, Utilization of CO2 and N2 as cushion gas in underground gas storage process: A review. Journal of Energy Storage, 2023. 67: p. 107596.
23. Vogel, E., Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K. Journal of Chemical & Engineering Data, 2011. 56(7): p. 3265-3272.
24. Amiri, I.I., et al., The effect of gas solubility on the selection of cushion gas for underground hydrogen storage in aquifers. Journal of Energy Storage, 2024. 80: p. 110264.
25. Xiong, W., et al., Low viscosity superbase protic ionic liquids for the highly efficient simultaneous removal of H2S and CO2 from CH4. Separation and Purification Technology, 2021. 263: p. 118417.