ارزیابی سوخت‌وساز سلولی قارچ آسپرژیلوس نایجر در تولید اسیدهای آلی با در نظر گرفتن نقش مواد تنظیمی در محیط کشت

نوع مقاله : پژوهشی اصیل

نویسندگان

گروه بیوتکنولوژی، دانشکده مهندسی شیمی، دانشگاه تربیت مدرس، تهران، ایران

چکیده
موضوع تحقیق : آسپرژیلوس نایجر می‌تواند به عنوان کارخانه سلولی تولید کننده انواع اسیدهای آلی و آنزیم‌ها به کار گرفته شود که از مهم‌ترین این محصولات می‌توان به سیتریک اسید و اگزالیک اسید اشاره کرد. غلظت پایین قند در کشت این قارچ منجر به تولید اگزالیک اسید به عنوان محصول جانبی سیتریک اسید می‌شود. با توجه به این امر، بررسی سوخت و ساز سلولی و ارتباط آن با اجزای محیط کشت می‌تواند روشنگر دلیل این امر و یافتن راهی برای افزایش بازدهی تولید در این قارچ باشد.

روش تحقیق: پس از مطالعه همه‌جانبه سوخت و ساز سلولی مرکزی این قارچ، تمام مسیرهای منتهی به تولید سیتریک اسید و اگزالیک اسید و برهمکنش مواد درون سلولی و نقش تنظیمی آن‌ها بر یکدیگر مورد بررسی قرار گرفت تا بتوان مسیرهای مهم برای تنظیم درون سلولی برای این پژوهش و پژوهش‌های آتی را یافت. پس از آن مواد تنظیمی با روشی دقیق مبتنی بر تشابه آنزیمی از پایگاه داده برندا بدست آمد و در آزمایشگاه توسط محیط کشت‌های تنظیمی مورد بررسی روی کشت قارچ آسپرژیلوس نایجر قرار گرفت. این مهم با این هدف انجام شد تا بتوان در مقادیر کم قند 30 گرم بر لیتر گلوکز، شار را از اگزالات به سیترات منتقل و تولید اگزالیک اسید را کاهش و سیتریک اسید را افزایش داد.

نتایج اصلی: پس از بررسی مطالعات قبلی واکنش‌ها و ژن‌های کلیدی برای تحقیقات آتی معرفی شدند. بررسی اثرگذاری کوچک مولکول‌ها به عنوان مواد تنظیمی نه تنها اهمیت ترکیب مواد موجود در محیط کشت را برای ما روشن کرد بلکه با این روش توانستیم تا شار سوخت و سازی را از اگزالات به سمت سیترات هدایت کنیم. آمونیوم، لوسین، سیستئین، سدیم آزید، گلوتاتیون و متفورمین همگی در از بین بردن اگزالیک اسید مؤثر بودند. در این راستا، تولید اگزالیک اسید به مقدار 1868، 1530، 2093، 2250، 787 و 675 mg/L در مقایسه با محیط کشت شاهد که در آن 5560 mg/L اگزالیک تولید شده بود، مشاهد شد. علاوه بر این، حذف اگزالیک اسید در برخی موارد منجر به تولید اسیدهای بیشتری مانند کشت حاوی آمونیوم، سیستئین و متفورمین شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluating the Metabolic Activity of Aspergillus niger for Organic Acid Production Considering the Impact of Small Molecules in Culture Media

نویسندگان English

Ali Naderi
Seyyed Mohammad Mousavi
Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
چکیده English

Research subject: Aspergillus niger stands as a versatile filamentous fungus renowned for its industrial significance in producing various organic acids, notably citric acid and oxalic acid. Low sugar concentration as substrate leads to the production of oxalic acid, therefore, this article delves into the intricate metabolic machinery orchestrating the synthesis of these acids within A. niger, shedding light on the pivotal role of culture media composition and metabolic activity.

Research approach: Through a comprehensive review of A. niger metabolism, this study elucidates the pathways involved in the biosynthesis of citric acid and oxalic acid, unraveling the intricate interplay of enzymatic cascades and regulatory mechanisms governing their production. Furthermore, it explores the impact of small molecules on metabolic flux through regulatory media, offering insights into strategies for controlling metabolic flux in order to eliminate oxalic acid production and amplify the citric acid production considering low sugar content of 30 g/l.

Main results: After careful review of previous researches, key reactions and genes was found and introduced for future researches in order to control the A. niger products. Examination of small molecule as a regulator in culture media not only elucidated the importance of culture media composition but also employing them helped us to redirect flux from oxalate toward citrate. NH4, Leucine, Cysteine, NaF, Glutathione, and Metformin were all found to be effective in the elimination of oxalic acid. In this regard, employing them leads to the production of 1868, 1530, 2093, 2250, 787, and 675 mg/L oxalic acid in comparison to the control culture media in which 5560 mg/L oxalic was produced. In addition, elimination of oxalic acid in some cases leads to the production of more acids like the culture containing NH4, Cysteine and Metformin.

کلیدواژه‌ها English

Aspergillus niger
Regulatory defined medium
Metabolic activity
Organic Acid
Small molecule
[1] Yang, L., Lübeck, M., & Lübeck, P. S., Aspergillus as a versatile cell factory for organic acid production, Fungal Biology Reviews, 31(1), 33-49, 2017.
[2] Knuf, C., & Nielsen, J., Aspergilli: systems biology and industrial applications. Biotechnol., 7(9), 1147-55, 2012.
[3] Dhillon, S., et al., Recent Advances in Citric Acid Bio-production and Recovery. Food and Bioprocess Technology, 4(4), 505-529, 2011.
[4] Meyer, V., et al., The Cell Factory Aspergillus Enters the Big Data Era: Opportunities and Challenges for Optimising Product Formation. Adv Biochem Eng Biotechnol, 149, 91-132, 2015.
[5] Kumar, S., Panwar, P., Sehrawat, N., Upadhyay, S., Sharma, A., Singh, M. & Yadav, M., Oxalic acid: recent developments for cost-effective microbial production. Physical Sciences Reviews, 2024.
[6] Horeh, N. B., & Mousavi, S. M., Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger. Waste Management, 60, 666-679, 2017.
[7] Tong, Z., et al., Systems metabolic engineering for citric acid production by Aspergillus niger in the post-genomic era. Microbial Cell Factories, 18(1), 28, 2019.
[8] Ruijter, G. J. G., van de Vondervoort, P. J. I., & Visser, J., Oxalic acid production by Aspergillus niger: an oxalate-non-producing mutant produces citric acid at pH 5 and in the presence of manganese. Microbiology, 145(Pt 9), 2569-2576, 1999.
[9] Capuder, M., et al., Highly active, citrate inhibition resistant form of Aspergillus niger 6-phosphofructo-1-kinase encoded by a modified pfkA gene. J Biotechnol, 144(1), 51-7, 2009.
[10] Hou, L., et al., Functional analysis of the mitochondrial alternative oxidase gene (aox1) from Aspergillus niger CGMCC 10142 and its effects on citric acid production. Appl Microbiol Biotechnol, 102(18), 7981-7995, 2018.
[11] Wang, L., et al., Inhibition of oxidative phosphorylation for enhancing citric acid production by Aspergillus niger. Microb Cell Fact, 14, 7, 2015.
[12] de Jongh, J., & Nielsen, J., Enhanced citrate production through gene insertion in Aspergillus niger. Metab Eng, 10(2), 87-96, 2008.
[13] de Moreno de LeBlanc, A., et al., Current Review of Genetically Modified Lactic Acid Bacteria for the Prevention and Treatment of Colitis Using Murine Models. Gastroenterol Res Pract, 2015.
[14] Motamedian, E., Sarmadi, M., & Derakhshan, E., Development of a regulatory defined medium using a system-oriented strategy to reduce the intracellular constraints. Process Biochemistry, 2019.
[15] Firoozabadi, H., Mardanpour, M. M., & Motamedian, E., A system-oriented strategy to enhance electron production of Synechocystis sp. PCC6803 in bio-photovoltaic devices: experimental and modeling insights. Scientific Reports, 11(1), 12294, 2021.
[16] Aminian-Dehkordi, J., et al., A Systems-Based Approach for Cyanide Overproduction by Bacillus megaterium for Gold Bioleaching Enhancement. Front in Bioeng and Biotech, 8, 2020.
[17] Naderi, A., Vakilchap, F., Motamedian, E., Mousavi, S.M., Regulatory-systemic approach in Aspergillus niger for bioleaching improvement by controlling precipitation. Appl Microbiol Biotechnol 107, 7331–7346, 2023.
[18] Papagianni, M., Advances in citric acid fermentation by Aspergillus niger: biochemical aspects, membrane transport and modeling. Biotechnol Adv, 25(3), 244-63, 2007.
[19] Tong, Z., Tong, Y., Wang, D., Shi, Y.-C., Whole Maize Flour and Isolated Maize Starch for Production of Citric Acid by Aspergillus niger: A Review. Starch. 2023.
[20] Chen, H., et al., Physiological characterization of ATP-citrate lyase in Aspergillus niger. J Ind Microbiol Biotechnol, 41(4), 721-31, 2014.
[21] Kubicek-Pranz, E. M., et al., Changes in the concentration of fructose 2,6-bisphosphate in Aspergillus niger during stimulation of acidogenesis by elevated sucrose concentration. Biochim Biophys Acta, 1033(3), 250-5, 1990.
[22] Habison, A., Kubicek, C. P., & Röhr, M., Partial purification and regulatory properties of phosphofructokinase from Aspergillus niger. Biochem J, 209(3), 669-76, 1983.
[23] Kubicek, C. P., The role of the citric acid cycle in fungal organic acid fermentations. Biochem Soc Symp, 54, 113-26, 1987.
[24] Odoni, D. I., et al., Aspergillus niger citrate exporter revealed by comparison of two alternative citrate producing conditions. FEMS Microbiol Lett, 366(7), 2019.
[25] Röhr, M., & Kubicek, C. P., Regulatory aspects of citric acid fermentation by Aspergillus niger. Process Biochem, 16, 34-7, 1981.
[26] Wei, Z., et al., Microbial Biosynthesis of L-Malic Acid and Related Metabolic Engineering Strategies: Advances and Prospects. Front in Bioeng and Biotech, 9, 2021.
[27] Joosten, H. J., et al., Identification of fungal oxaloacetate hydrolyase within the isocitrate lyase/PEP mutase enzyme superfamily using a sequence marker-based method. Proteins, 2008.
[28] Andersen, M. R., Lehmann, L., & Nielsen, J., Systemic analysis of the response of Aspergillus niger to ambient pH. Genome Biol, 10(5), R47, 2009.
[29] Yoshioka, I., Kobayashi, K., & Kirimura, K., Overexpression of the gene encoding alternative oxidase for enhanced glucose consumption in oxalic acid producing Aspergillus niger expressing oxaloacetate hydrolase gene. J Biosci Bioeng, 129(2), 172-176, 2020.
[30] Yin, X., et al., Comparative genomics and transcriptome analysis of Aspergillus niger and metabolic engineering for citrate production. Scientific Reports, 7(1), 41040, 2017.
[31] Xie, H., et al., Transcriptomic analysis of Aspergillus niger strains reveals the mechanism underlying high citric acid productivity. Bioresources and Bioprocessing, 5(1), 21, 2018.
[32] Zheng, X., et al., Comprehensive Improvement of Sample Preparation Methodologies Facilitates Dynamic Metabolomics of Aspergillus niger. Biotechnol J, 14(3), e1800315, 2019.
[33] Xu, D. B., et al., The influence of type and concentration of the carbon source on production of citric acid by Aspergillus niger. Applied Microbiology and Biotechnology, 30(6), 553-558, 1989.
[34] Nikfar, S., et al., Enhanced bioleaching of Cr and Ni from a chromium-rich electroplating sludge using the filtrated culture of Aspergillus niger. Journal of Cleaner Production, 264, 121622, 2020.
[35] Adams, I. P., et al., The distinctiveness of ATP:citrate lyase from Aspergillus nidulans. Biochim Biophys Acta, 1597(1), 36-41, 2002.
[36] Tyagi, A. K., Siddiqui, F. A., & Venkitasubramanian, T. A., Studies on the purification and characterization of malate dehydrogenase from Mycobacterium phlei. Biochim Biophys Acta, 485(2), 255-67, 1977.
[37] Kil, I. S., & Park, J. W., Regulation of mitochondrial NADP+-dependent isocitrate dehydrogenase activity by glutathionylation. J Biol Chem, 280(11), 10846-54, 2005.
[38] Agrawal, P. K., Bhatt, C. S., & Viswanathan, L., Studies on some enzymes relevant to citric acid accumulation by Aspergillus niger. Enzyme and Microbial Technology, 5(5), 1983.