فروشویی زیستی غیرمستقیم غبار کوره قوس الکتریکی با استفاده از متابولیتهای تولیدشده توسط مخمر یاروویا لیپولیتیکا در حضور منبع کربن گلیسرول خام

نوع مقاله : پژوهشی اصیل

نویسندگان

1 دانشکده مهندسی شیمی- دانشگاه تربیت مدرس

2 دانشکده علوم زیستی و محیط زیست، دانشگاه پلی تکنیک دل مارکه، آنکنا، ایتالیا

چکیده
از جمله نگرانی­های صنعت فولاد، مدیریت پسماندهای حاصل از آن است، که از نظر محیط زیستی و اقتصادی اهمیت بسیار دارد. غبار کوره قوس الکتریکی پسماندی است، که تاکنون از روش­های هیدرومتالورژی، پیرومتالورژی و تثبیت برای مدیریت آن استفاده شد. در این پژوهش از فروشویی زیستی به­عنوان روشی مقرون به­صرفه و دوست­دار محیط زیست برای بازیابی منگنز از غبار کوره قوس الکتریکی ریخته­گری فولاد طبرستان استفاده شد. فرآیند فروشویی زیستی با استفاده از محیط کشت مستعمل حاصل از مخمر یاروویا لیپولیتیکا IBRC-M30168 انجام شد. برای بررسی اثر pH اولیه و غلظت گلیسرول خام موجود در محیط کشت، چهار محیط کشت با pH اولیه 5/5 و 7 و غلظت گلیسرول خام g/l 80 و g/l 100 در دمای ᵒC 30 و دور rpm 140 تهیه شدند. پس از 9 روز با استفاده از سانتریفیوژ مخمر از متابولیت­های تولیدی جدا شد. آزمون LC-MS نشان داد اسیدهای آلی سیتریک، مالیک و سوکسینیک در محیط حضور دارند. بیشترین مقدار اسیدهای آلی ترشح شده در محیط کشت به­ترتیب ppm 79600، ppm 28100 و ppm 1000 اسیدهای سیتریک، مالیک و سوکسینیک بدست آمد.از محیط کشت بدون مخمر برای فروشویی زیستی به روش محیط کشت مستعمل در حضور چگالی توده g/l 10، طی 3، 6 و 9 روز در دمای ᵒC 60 و دور rpm 140 استفاده شد. نتایج نشان دادند بیشترین میزان بازیابی مربوط به محیط کشت مستعمل با غلظت g/l 80 گلیسرول خام و pH اولیه 5/5 بود، که منجر به بازیابی 5/58 % منگنز موجود در غبار را در حضور چگالی توده g/l 10 طی 3 روز شد. مقایسه انجام شده بین نمودار FTIR غبار کوره قوس الکتریکی و باقیمانده حاصل از فروشویی زیستی نشان داد، پیوندهای C=C و O-H به باقیمانده فروشویی زیستی اضافه شده است، که نشان­دهنده تغییرات ساختاری در باقیمانده فروشویی زیستی است. همچنین این نمودار نشان می­دهد، شدت قله مربوط به سولفات آهن در نمونه پس از فروشویی زیستی افزایش داشته است، که می­تواند مربوط به تشکیل رسوب این فلز باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Utilizing Yarrowia lipolytica supernatant for electric arc furnace dust bioleaching

نویسندگان English

Seyedeh Neda Mousavi 1
Seyyed Mohammad Mousavi 1
Francessca Beolchini 2
1 Chemical Engineering Department, Tarbiat Modares University
2 Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Ancona, Italy
چکیده English

Abstract

کلیدواژه‌ها English

Bioleaching
Electric arc furnace dust
Yarrowia lipolytica
Crude glycerol
Manganese
[1] Montenegro, V., Agatzini-Leonardou, S., Oustadakis, P., and Tsakiridis, P., Hydrometallurgical Treatment of EAF Dust by Direct Sulphuric Acid Leaching at Atmospheric Pressure, Waste and Biomass Valorization, 7(6), 1531–1548, 2016.
[2] Lanzerstorfer, C., and Preitschopf, W., Steelmaking Dust: Speciation of Zinc by Sequential Leaching. Inzynieria Mineralna, 2020(2), 79–82, 2020.
[3] Zoraga, M., Ilhan, S., and Kalpakli, A. O., Leaching Kinetics of Electric Arc Furnace Dust in Nitric Acid solutions. International Journal of Chemical Kinetics, 52(12), 933–942, 2020.
[4] Oustadakis, P., Tsakiridis, P. E., Katsiapi, A., and Agatzini-Leonardou, S., Hydrometallurgical Process for Zinc Recovery from Electric Arc Furnace Dust (EAFD). Part I: Characterization and Leaching by Diluted Sulphuric Acid, Journal of Hazardous Materials, 179, 8-14, 2010.
[5] Khanmohammadi Hazaveh, P., Karimi, S., Rashchi, F., and Sheibani, S., Purification of the Leaching Solution of Recycling Zinc from the Hazardous Electric Arc Furnace Dust Through an As-Bearing Jarosite, Ecotoxicology and Environmental Safety, 202, 110893, 2020.
[6] Darezereshki, E., Vakylabad, A. B., and Koohestani, B., A Hydrometallurgical Approach to Produce Nano-ZnO from Electrical Arc Furnace Dusts, Mining, Metallurgy and Exploration, 38(3), 1525–1535, 2021.
[7] Nair, A. T., Mathew, A., Archana, A. R., and Akbar, M. A., Use of Hazardous Electric Arc Furnace Dust in the Construction Industry : A Cleaner Production Approach, Journal of Cleaner Production, 377, 134282, 2022.
[8] Dutra, A. J. B., Paiva, P. R. P., and Tavares, L. M., Alkaline Leaching of Zinc from Electric Arc Furnace Steel Dust, Minerals Engineering, 19(5), 478–485, 2006.
[9] Borda, J. and Torres, R., Comparative Study of Selective Zinc Leaching from EAFD using Carboxylic Agents, Revista Mexicana Ingenieria Quimica, 20(1), 389–398, 2021.
[10] Vakilchap, F., Mousavi, S. M., and Shojaosadati, S. A., Role of Aspergillus niger in Recovery Enhancement of Valuable Metals from Produced Red Mud in Bayer process, Bioresource Technology, 218, 991–998, 2016.
[11] Rasoulnia, P., and Mousavi, S. M., Maximization of Organic Acids Production by Aspergillus niger in a Bubble Column Bioreactor for V and Ni Recovery Enhancement from Power Plant Residual Ash in Spent-medium Bioleaching Experiments, Bioresource Technology, 216, 729–736, 2016.
[12] Cavallo, E., Charreau, H., Cerrutti, P., and Foresti, M. L., Yarrowia lipolytica: A Model Yeast for Citric Acid Production, FEMS Yeast Research, 17(8), 1–16, 2017.
[13] Magdouli, S., Brar, S. K., and Blais, J. F., Morphology and Rheological Behavior of Yarrowia lipolytica: Impact of Dissolved Oxygen Level on Cell Growth and Lipid Composition, Process Biochemistry, 65, 1–10, 2018.
[14] Kamzolova, S. V., Samoilenko, V. A., Lunina, J. N., and Morgunov, I. G., Effects of Medium Components on Isocitric Acid Production by Yarrowia lipolytica Yeast, Fermentation, 6(4), 112, 2020.
[15] Tomaszewska, L., Rymowicz, W., and Rywińska, A., Mineral Supplementation Increases Erythrose Reductase Activity in Erythritol Biosynthesis from Glycerol by Yarrowia lipolytica, Applied Biochemistry and Biotechnology, 172(6), 3069–3078, 2014.
[16] Bankar, A., Winey, M., Prakash, D., Kumar, A. R., Gosavi, S., Kapadnis, B., and Zinjarde, S., Bioleaching of Fly Ash by the Tropical Marine Yeast, Yarrowia lipolytica NCIM 3589, Applied Biochemistry and Biotechnology, 168(8), 2205–2217, 2012.
[17] Ferreira, D. M., Silva, J. A. S., Sérvulo, E. F. C., Frescura, V. L. A., Dognini, J., de Melo Juste Silva, A. A., and Oliveira, F. J. S., Valorization of Solid Waste from Oil Refining and Biodiesel Industries for the Biorecovery of Rare Earth Elements, Biomass Conversion and Biorefinery, 12(7), 2891–2900, 2020.
[18] Qian, X., Xu, N., Jing, Y., Song, M., Zhou, J., Dong, W., Xin, F., Zhang, W., Jiang, M., and Ochsenreither, K., Valorization of Crude Glycerol into Citric Acid and Malic Acid by Yarrowia lipolytica, Industrial and Engineering Chemistry Research, 59(39), 17165–17172, 2020.
[19] Naseri, T., Mousavi, S. M., and Kuchta, K., Environmentally Sustainable and Cost-effective Recycling of Mn-rich Li-ion Cells Waste: Effect of Carbon Sources on the Leaching Efficiency of Metals Using Fungal Metabolites, Waste Management, 157, 47–59, 2023.
[20] Ghosh, S., Mohanty, S., Akcil, A., Sukla, L. B., and Das, A. P., A Greener Approach for Resource Recycling: Manganese Bioleaching, Chemosphere, 154, 628–639, 2016.
[21] Gu, T., Rastegar, S. O., Mousavi, S. M., Li, M., and Zhou, M., Advances in Bioleaching for Recovery of Metals and Bioremediation of Fuel Ash and Sewage Sludge, Bioresource Technology, 261, 428–440, 2018.
[22] Gomes, H. I., Funari, V., Mayes, W. M., Rogerson, M., and Prior, T. J., Recovery of Al, Cr, and V from Steel Slag by Bioleaching: Batch and Column Experiments, Journal of Environmental Management, 222, 30–36, 2018.
[23] Horeh, N. B., Mousavi, S. M., and Shojaosadati, S. A., Bioleaching of Valuable Metals from Spent Lithium-ion Mobile Phone Batteries Using Aspergillus niger, Journal of Power Sources, 320, 257–266, 2016.
[24] Sadeghabad, M. S., Bahaloo-Horeh, N., and Mousavi, S. M., Using Bacterial Culture Supernatant for Extraction of Manganese and Zinc from Waste Alkaline Button-cell Batteries, Hydrometallurgy, 188, 81–91, 2019.
[25] Zhang, W., and Hu, Z., Recent Advances in Sample Preparation Methods for Elemental and Isotopic Analysis of Geological Samples, Spectrochimica Acta - Part B Atomic Spectroscopy, 160, 105690, 2019.
[26] Glass, G. K., and Buenfeld, N. R., Differential Acid Neutralization Analysis, Cement and Concrete Research, 29(10), 1681–1684, 1999.
[27] Egermeier, M., Russmayer, H., Sauer, M., and Marx, H., Metabolic Flexibility of Yarrowia lipolytica Growing on Glycerol, Frontiers in Microbiology, 8, 1–9, 2017.
[28] Maslov OY, Kolisnyk SV, Kostina TA, Shovkova ZV, Ahmedov EY, and Komisarenko MA., Validation of the Alkalimetry Method for the Quantitative Determination of Free Organic Acids in Raspberry Leaves, Journal of Organic and Pharmaceutical Chemistry, 1548(73), 53-58, 2021.
[29] Sergunova EV, Sorokina AA, Bokov DO, Marakhova I, and Vyacheslavovna E., Qualitative and Quantitative Determination of Organic Acids in Crude Herbal Drugs and Medicinal Herbal Preparations for Quality Control in Russian Federation by Modern Physicochemical Methods, Pharmacognosy Journal, 11(5), 1132-1137, 2019.
[30] Malekian, H., Salehi, M., and Biria, D., Investigation of Platinum Recovery from a Spent Refinery Catalyst with a Hybrid of Oxalic Acid Produced by Aspergillus niger and Mineral Acids, Waste Management, 85, 264–271, 2019.
[31] Yuzbasheva, E. Y., Scarcia, P., Yuzbashev, T. V., Messina, E., Kosikhina, I. M., Palmieri, L., Shutov, A. V., Taratynova, M. O., Amaro, R. L., Palmieri, F., Sineoky, S. P., and Agrimi, G., Engineering Yarrowia lipolytica for the Selective and High-level Production of Isocitric Acid Through Manipulation of Mitochondrial Dicarboxylate–Tricarboxylate Carriers, Metabolic Engineering, 65, 156–166, 2021.
[32] Finogenova, T. V., Kamzolova, S. V., Dedyukhina, E. G., Shishkanova, N. V., Il’chenko, A. P., Morgunov, I. G., Chernyavskaya, O. G., and Sokolov, A. P., Biosynthesis of Citric and Isocitric Acids from Ethanol by Mutant Yarrowia lipolytica N 1 under Continuous Cultivation, Applied Microbiology and Biotechnology, 59(4–5), 493–500, 2002.
[33] Harzevili, F. D., Biotechnological Applications of the Yeast Yarrowia lipolytica, Springer Briefs in Microbiology, 1-74, 2014.
[34] Kamzolova, S. V., Finogenova, T. V., and Morgunov, I. G., Microbiological Production of Citric and Isocitric Acids from Sunflower Oil. Food Technology and Biotechnology, 46(1), 51–59, 2008.
[35] Rasoulnia, P., Mousavi, S. M., Rastegar, S. O., and Azargoshasb, H., Fungal Leaching of Valuable Metals from a Power Plant Residual Ash Using Penicillium simplicissimum: Evaluation of thermal Pretreatment and Different Bioleaching Methods, Waste Management, 52, 309–317, 2016.
[36] Srichandan, H., Mohapatra, R. K., Parhi, P. K., and Mishra, S., Bioleaching Approach for Extraction of Metal Values from Secondary Solid Wastes: A Critical Review, Hydrometallurgy, 189, 105122, 2019.
[37] Nefedova, K. V., Zhuravlev, V. D., Khaliullin, S. M., Tyutyunnik, A. P., and Buldakova, L. Y., Study of the Composition of a Precipitate Formed from Solutions for the Synthesis of Cathodic Materials Containing Manganese and Citric Acid, Theoretical Foundations of Chemical Engineering, 55(1), 117–122, 2021.
[38] Ferella, F., De Michelis, I., Beolchini, F., Innocenzi, V., and Vegliò, F., Extraction of Zinc and Manganese from Alkaline and Zinc-carbon Spent Batteries by Citric-sulphuric Acid Solution, International Journal of Chemical Engineering, 2010, 659434, 2010.
[39] Villamizar, E., Jiménez-Martínez, J., Blanco, S., and Delvasto, P., Obtention of a Cobalt-bearing Coating Using Spent Batteries as Raw Materials, Journal of Physics: Conference Series. 1386(1), 012015, 2019.
[40] Naseri, T., Pourhossein, F., Mousavi, S. M., Kaksonen, A. H., and Kuchta, K., Manganese Bioleaching: an Emerging Approach for Manganese Recovery from Spent Batteries, Reviews in Environmental Science and Biotechnology, 21(2), 447–468, 2022.
[41] Rasoulnia, P., Barthen, R., and Lakaniemi, A. M., A Critical Review of Bioleaching of Rare Earth Elements: The Mechanisms and Effect of Process Parameters, Critical Reviews in Environmental Science and Technology, 51(4), 378–427, 2021.
[42] Silva, A. M. N., Kong, X., Parkin, M. C., Cammack, R., and Hider, R. C., Iron(iii) Citrate Speciation in Aqueous Solution, Dalton Transactions, 40, 8616–8625, 2009.
[43] Martins, F. M., Neto, J. M. dos R., and Cunha, C. J. da., Mineral Phases of Weathered and Recent Electric Arc Furnace Dust, Journal of Hazardous Materials, 154(1–3), 417–425, 2008.
[44] Nikolic, I., Crossed D Signurovic, D., Markovic, S., Veselinovic, L., Jankovic-Castvan, I., Radmilovic, V. V., and Radmilovic, V. R., Alkali Activated Slag Cement Doped with Zn-rich Electric Arc Furnace Dust, Journal of Materials Research and Technology, 9(6), 12783–12794, 2020.
[45] Chang, F., Wu, S., Zhang, F., Lu, H., and Du, K., Characterization of Minerals, Metals, and Materials 2015, Springer International Publishing, 83–90, 2015.
[46] Adamou, A., Manos, G., Messios, N., Georgiou, L., Xydas, C., and Varotsis, C., Probing the Whole Ore Chalcopyrite–bacteria Interactions and Jarosite Biosynthesis by Raman and FTIR Microspectroscopies, Bioresource Technology, 214, 852–855, 2016.