[1] Y. Chen, A.K. Awasthi, F. Wei, Q. Tan, J. Li, Single-use plastics: Production, usage, disposal, and adverse impacts, Sci. Total Environ. (2020) 141772.
[2] A.C. Albertsson, Biodegradation of synthetic polymers. II. A limited microbial conversion of 14C in polyethylene to 14CO2 by some soil fungi, J. Appl. Polym. Sci. 22(12) (1978) 3419-3433.
[3] A.C. Albertsson, Z. Banhidi, Microbial and oxidative effects in degradation of polyethene, J. Appl. Polym. Sci. 25(8) (1980) 1655-1671.
[4] A.C. Albertsson, Z. Baanhidi, L.L. Beyer‐Ericsson, Biodegradation of synthetic polymers. III. The liberation of 14CO2 by molds like fusarium redolens from 14C labeled pulverized high‐density polyethylene, J. Appl. Polym. Sci. 22(12) (1978) 3435-3447.
[5] A.-C. Albertsson, S.O. Andersson, S. Karlsson, The mechanism of biodegradation of polyethylene, Polym. Degrad. Stab. 18(1) (1987) 73-87.
[6] T.R. Curlee, S. Das, Identifying and assessing targets of opportunity for plastics recycling, Resour Conserv Recycl RESOUR CONSERV RECY 5(4) (1991) 343-363.
[7] P. Umaraw, P.E. Munekata, A.K. Verma, F.J. Barba, V. Singh, P. Kumar, J.M. Lorenzo, Edible films/coating with tailored properties for active packaging of meat, fish and derived products, Trends Food Sci. Technol. 98 (2020) 10-24.
[8] S. Kalia, A. Dufresne, B.M. Cherian, B. Kaith, L. Avérous, J. Njuguna, E. Nassiopoulos, Cellulose-based bio-and nanocomposites: a review, Int. J. Polym. Sci. 2011 (2011).
[9] N. Follain, C. Joly, P. Dole, C. Bliard, Mechanical properties of starch‐based materials. I. Short review and complementary experimental analysis, J. Appl. Polym. Sci. 97(5) (2005) 1783-1794.
[10] B. Saberi, R. Thakur, Q.V. Vuong, S. Chockchaisawasdee, J.B. Golding, C.J. Scarlett, C.E. Stathopoulos, Optimization of physical and optical properties of biodegradable edible films based on pea starch and guar gum, Ind Crops Prod 86 (2016) 342-352.
[11] L. Ren, X. Yan, J. Zhou, J. Tong, X. Su, Influence of chitosan concentration on mechanical and barrier properties of corn starch/chitosan films, Int. J. Biol. Macromol. 105 (2017) 1636-1643.
[12] G.-Z. Yin, X.-M. Yang, Biodegradable polymers: a cure for the planet, but a long way to go, J. Polym. Res. 27(2) (2020) 1-14.
[13] J. Wróblewska-Krepsztul, T. Rydzkowski, G. Borowski, M. Szczypiński, T. Klepka, V.K. Thakur, Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment, Int. J. Polym. Anal. Charact. 23(4) (2018) 383-395.
[14] J. Rydz, M. Musioł, B. Zawidlak-Węgrzyńska, W. Sikorska, Present and future of biodegradable polymers for food packaging applications, Biopoly. food des. (2018) 431-467.
[15] A.S. Luyt, S.S. Malik, Can biodegradable plastics solve plastic solid waste accumulation?, Plastics to Energy, Elsevier2019, pp. 403-423.
[16] D.G. Hayes, M.B. Anunciado, J.M. DeBruyn, S. Bandopadhyay, S. Schaeffer, M. English, S. Ghimire, C. Miles, M. Flury, H.Y. Sintim, Biodegradable plastic mulch films for sustainable specialty crop production, Polymers for Agri-food applications, Springer2019, pp. 183-213.
[17] Y.V. Vazquez, J.A. Ressia, M.L. Cerrada, S.E. Barbosa, E.M. Valles, Prodegradant additives effect onto comercial polyolefins, J. Polym. Environ. 27(3) (2019) 464-471.
[18] P. Rizzarelli, M. Rapisarda, L. Ascione, F. Degli Innocenti, F.P. La Mantia, Influence of Photo-Oxidation on the Performance and Soil Degradation of Oxo-and Biodegradable Polymer-Based Items for Agricultural Applications, Polym. Degrad. Stab. (2021) 109578.
[19] I. Jakubowicz, Evaluation of degradability of biodegradable polyethylene (PE), Polymer degradation and stability 80(1) (2003) 39-43.
[20] F. Khabbaz, A.-C. Albertsson, Rapid test methods for analyzing degradable polyolefins with a pro‐oxidant system, J. Appl. Polym. Sci. 79(12) (2001) 2309-2316.
[21] G.M. Ferguson, M. Hood, K. Abbott, Photodegradable high density polyethylene‐based shopping bags—environmental hazard or blessing?, Polym. Int. 28(1) (1992) 35-40.
[22] C. David, M. Trojan, A. Daro, W. Demarteau, Photodegradation of polyethylene: comparison of various photoinitiators in natural weathering conditions, Polym. Degrad. Stab. 37(3) (1992) 233-245.
[23] P. Roy, P. Surekha, C. Rajagopal, V. Choudhary, Thermal degradation studies of LDPE containing cobalt stearate as pro-oxidant, Express Polym Lett 1(4) (2007) 208-216.
[24] Y.-Z. Wang, K.-K. Yang, X.-L. Wang, Q. Zhou, C.-Y. Zheng, Z.-F. Chen, Agricultural application and environmental degradation of photo-biodegradable polyethylene mulching films, J. Polym. Environ. 12(1) (2004) 7-10.
[25] P.K. Roy, M. Hakkarainen, I.K. Varma, A.-C. Albertsson, Degradable polyethylene: fantasy or reality, Environ. Sci. Technol. 45(10) (2011) 4217-4227.
[26] P. Tribedi, S. Dey, Pre-oxidation of low-density polyethylene (LDPE) by ultraviolet light (UV) promotes enhanced degradation of LDPE in soil, Environ. Monit. Assess. 189(12) (2017) 1-8.
[27] F. Magalhães, F.C. Moura, R.M. Lago, TiO2/LDPE composites: A new floating photocatalyst for solar degradation of organic contaminants, Desalination 276(1-3) (2011) 266-271.
[28] P.K. Roy, P. Singh, D. Kumar, C. Rajagopal, Manganese stearate initiated photo‐oxidative and thermo‐oxidative degradation of LDPE, LLDPE and their blends, Journal of Applied Polymer Science 117(1) (2010) 524-533.
[29] A.S. Babetto, M.C. Antunes, S.H. Bettini, B.C. Bonse, A Recycling-Focused Assessment of the Oxidative Thermomechanical Degradation of HDPE Melt Containing Pro-oxidant, Journal of Polymers and the Environment 28(2) (2020) 699-712.
[30] G. Sunil, Y. Yang, A. Jae-Hyung, H. Hor-Gil, Biodegradation of polyethylene: a brief review, Appl. Biol. Chem. 63(1) (2020).
[31] J. Liu, X. Fu, S. Chen, Y. Zhu, Electronic structure and optical properties of Ag3PO4 photocatalyst calculated by hybrid density functional method, Appl. Phys. Lett. 99(19) (2011) 191903.
[32] W. Wu, F. He, Y. Wang, Reversible ultrafast melting in bulk CdSe, J. Appl. Phys. 119(5) (2016) 055701.
[33] P.-Q. Wang, Y. Bai, P.-Y. Luo, J.-Y. Liu, Ag2O/Ag3PO4 heterostructures: highly efficient and stable visible-light-induced photocatalyst for degradation of methyl orange and phenol, Micro Nano Lett. 8(7) (2013) 340-344.
[34] A.E. Raevskaya, A.L. Stroyuk, S.Y. Kuchmiy, Preparation of colloidal CdSe and CdS/CdSe nanoparticles from sodium selenosulfate in aqueous polymers solutions, J. Colloid Interface Sci. 302(1) (2006) 133-141.
[35] M. Sebaa, C. Servens, J. Pouyet, Natural and artificial weathering of low‐density polyethylene (LDPE): Calorimetric analysis, Journal of Applied Polymer Science 47(11) (1993) 1897-1903.
[36] W. Ho, C.Y. Jimmy, Sonochemical synthesis and visible light photocatalytic behavior of CdSe and CdSe/TiO2 nanoparticles, J. Mol. Catal. A: Chem. 247(1-2) (2006) 268-274.
[37] Y.P. Khanna, E.A. Turi, T.J. Taylor, V.V. Vickroy, R.F. Abbott, Dynamic Mechanical Relaxations in Polyethylene, Macromolecules 18(6) (1985) 1302-1309.
[38] H. Zhou, G.L. Wilkes, Orientation anisotropy of the mechanical α relaxation of high-density polyethylene films having a well-defined stacked lamellar morphology, Macromolecules 30(8) (1997) 2412-2421.
[39] K. Kuwabara, H. Kaji, F. Horii, Solid-state 13C NMR analyses for the structure and molecular motion in the α relaxation temperature region for metallocene-catalyzed linear low-density polyethylene, Macromolecules 33(12) (2000) 4453-4462.
[40] I.S. Kolesov, R. Androsch, H.-J. Radusch, Effect of crystal morphology and crystallinity on the mechanical α-and β-relaxation processes of short-chain branched polyethylene, Macromolecules 38(2) (2005) 445-453.
[41] Y. Cheng, G. Yu, The Research of Interface Microdomain and Corona-Resistance Characteristics of Micro-Nano-ZnO/LDPE, Polymers 12(3) (2020) 563.
[42] H.L. Shen, P.C. Zhou, Research in Non-isothermal Crystallization Kinetics of LDPE and inorganic particle composite films, Advanced Materials Research, Trans Tech Publ, 2014, pp. 8-12.
[43] J.P. Jose, L. Chazeau, J.-Y. Cavaillé, K. Varughese, S. Thomas, Nucleation and nonisothermal crystallization kinetics in cross-linked polyethylene/zinc oxide nanocomposites, RSC Adv. 4(60) (2014) 31643-31651.
[44] N.R.M. Aras, I.M. Arcana, Synthesis of manganese stearate for high density polyethylene (HDPE) and its biodegradation, AIP Conf. Proc., AIP Publishing LLC, 2015, p. 070024.
[45] S. Wang, J. Zhang, Non-isothermal crystallization kinetics of high density polyethylene/titanium dioxide composites via melt blending, J. Therm. Anal. Calorim. 115(1) (2014) 63-71.
[46] C.D. Han, Rheology and processing of polymeric materials: Volume 1: Polymer Rheology, Oxford University Press on Demand2007.
[47] M. Hakkarainen, S. Karlsson, A.-C. Albertsson, Rapid (bio) degradation of polylactide by mixed culture of compost microorganisms—low molecular weight products and matrix changes, Polymer, 41 (2000) 2331-2338.