بررسی استفاده از زئولیت طبیعی بهبودیافته به عنوان پایه کاتالیست فرایند هیدروژن زدایی اکسایشی پروپان

نوع مقاله : پژوهشی اصیل

نویسندگان

1 دانشکده مهندسی شیمی، دانشگاه تربیت مدرس، تهران، ایران

2 پژوهشکده توسعه فناوری های کاتالیست، پژوهشگاه صنعت نفت، تهران، ایران

چکیده
موضوع تحقیق : در سال‌های اخیر تولید پروپیلن با مقیاس صنعتی مبتنی بر روش اکسایشی هیدروژن‌زدایی پروپان به دلیل عدم محدودیت‌ های ترمودینامیکی از اهمیت ویژه‌ای برخوردار بوده‌است. دراین راستا، به‌کارگیری زئولیت‌های طبیعی با فراوانی بالا و قیمت پایین از جایگاه ویژه‌ای برخوردار بوده‌است. در این مقاله زئولیت‌ طبیعی پرلیت به عنوان پایه کاتالیستی اصلاح‌شد و سپس عملکرد کاتالیست های سنتزی با فلز فعال وانادیوم در فرآیند هیدروژن‌زدایی اکسایشی پروپان در راستای تولید پروپیلن بررسیشد. در این فرایند خوراک مخلوط از پروپان و هوا با دبیh-1 40000 (GHSV)، تحت فشار اتمسفریک و دمای 500 درجه سانتی‌گراد در یک راکتور کوارتزی بستر ثابت مورد استفاده قرار گرفت.

روش تحقیق: در این پژوهش پایه پرلیت طبیعی به عنوان منبعی از آلومینیوم‌اکسید (Al2O3) و سیلیس (SiO2) توسط محلول یک مولار آمونیوم نیترات (NH4NO3) مورد تعویض یونی قرار گرفت(PERLIT-I). در ادامه به منظور بررسی تاثیر آلومنیوم‌زدایی پایه، غلظت‌های مختلف اسیدی از اسید نیتریک (HNO3) برابر با 0.75، 1.5، و 2.25 مولار، مورد استفاده قرار گرفت (PERLIT-IA). به منظور سنتز کاتالیست های 8% وزنی، چهار پایه سنتزشده توسط وانادیوم به عنوان فلز فعال به روش تلقیح خشک نشانده‌شدند. به منظور تعیین دقیق ساختار و ارزیابی ویژگی‌های کاتالیست، آنالیز‌های پراش اشعه ایکس(XRD)، میکروسکوپ الکترون روبشی (FE-SEM)، و برنامه دمایی واجذب آمونیاک (NH3-TPD) مورد استفاده قرار گرفتند‌.

نتایج اصلی: نتایج نشان داد میزان غلظت اسید مورد استفاده، پارامتری تاثیرگذار بر میزان درصد تبدیل و گزینش‌پذیری کاتالیست‌ها می‌باشد. در مقایسه، فعالیت متفاوت قابل توجهی بین عملکرد نمونه V/PERLIT-I نسبت به نمونه‌های V/PERLIT-IA مشاهده‌شد. مقدار بیشینه گزینش‌پذیری برای V/PERL-IA(2.25) برابر با 74 درصد نشان داده‌شد. با توجه به نتایج، پایه اصلاح‌شده پرلیت با گزینش‌پذیری مناسب می‌توانند در مطالعات بکارگیری به عنوان پایه‌صنعتی مورد توجه قرار گیرند.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating of Treated Natural Zeolite as a Catalyst Support for Propane Oxidative Dehydrogenation Process

نویسندگان English

Fatemeh Ebrahimi Rad 1
Jafar Towfighi Darian 1
Saeed Soltanali 2
1 Department of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
2 Catalysis Technologies Development Division, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
چکیده English

Research Subject: In recent years, industrial-scale production of propylene based on oxidative dehydrogenation of propane has been of particular importance due to the lack of thermodynamic limitations. In this regard, the use of natural zeolites with high abundance and low price has placed a special position. In this research, perlite natural zeolites were treated with ionic liquid solution and acid, then supported vanadium catalysis were synthesized. Performance of catalysis were investigated in oxidative dehydrogenation of propane to propylene process with a mixed feed of propane and air in a fixed bed quartz reactor under condition of atmospheric pressure and temperature of 500˚C with a flow rate of 40000 h-1 (GHSV).

Research Approach: In this study, natural perlite support as a source of aluminum oxide (Al2O3) and silica (SiO2) was ion exchanged by one molar solution of ammonium nitrate (NH4NO3 1 M). Continuously, to investigate the effect of delamination, different acid molar concentrations of nitric acid (HNO3) equal to 0.75, 1.5, and 2.25 were used and then compared with the just modified ion exchange sample without acid leaching (V/PERLIT-I). Dry vanadium impregnation, as an active metal, was carried out to synthesize 8% wt. catalysts. X-ray diffraction analyzes (XRD), scanning electron microscopy (FE-SEM), and ammonia Temperature-programmed desorption program (NH3-TPD) were used to characterization and evaluate the properties of the catalyst.

Main Result: The results showed that the concentration of acid used affects the conversion and selectivity of the catalysis. In comparison, a significant difference was observed between the performance of V/PERLIT-I sample compared to V/PERLIT-IA samples. The maximum selectivity value for V/PERLIT-IA(2.25) was 74%. According to the results, the treated perlite support with suitable selectivity can be considered in the studies of use as an industrial support.

کلیدواژه‌ها English

Support acidity
Olefin
Natural zeolite
Acidic treatment
oxidative dehydrogenation
[1] Amghizar I, Vandewalle LA, Van Geem KM, Marin GB., New trends in olefin production, Engineering, 3(2), 171-8, 2017.
[2] Hu P, Lang WZ, Yan X, Chu LF, Guo YJ., Influence of gelation and calcination temperature on the structure-performance of porous VOX-SiO2 solids in non-oxidative propane dehydrogenation, Journal of catalysis, 358, 108-17, 2018.
[3] Hu P, Lang WZ, Yan X, Chen XF, Guo YJ., Vanadium-doped porous silica materials with high catalytic activity and stability for propane dehydrogenation reaction, Applied Catalysis A: General, 553, 65-73, 2018.
[4] Sheintuch M, Liron O, Ricca A, Palma V., Propane dehydrogenation kinetics on supported Pt catalyst, Applied Catalysis A: General, 516, 17-29, 2016.
[5] Sadrameli SM., Thermal/catalytic cracking of liquid hydrocarbons for the production of olefins: A state-of-the-art review II: Catalytic cracking review., Fuel, 173, 285-97, 2016.
[6] Fattahi M, Kazemeini M, Khorasheh F, Rashidi A., An investigation of the oxidative dehydrogenation of propane kinetics over a vanadium–graphene catalyst aiming at minimizing of the COx species, Chemical Engineering Journal, 250, 14-24, 2014.
[7] Zhao S, Xu B, Yu L, Fan Y., Honeycomb-shaped PtSnNa/γ-Al2O3/cordierite monolithic catalyst with improved stability and selectivity for propane dehydrogenation, Chinese Chemical Letters, 29(6), 884-6, 2018.
[8] Du YJ, Li ZH, Fan KN., A theoretical investigation on the influence of anatase support and vanadia dispersion on the oxidative dehydrogenation of propane to propene, Journal of Molecular Catalysis A: Chemical, 379, 122-38, 2013.
[9] Beretta A, Piovesan L, Forzatti P., An investigation on the role of a Pt/Al2O3 catalyst in the oxidative dehydrogenation of propane in annular reactor, Journal of Catalysis, 184(2), 455-68, 1999.
[10] Tian J., Lin J., Xu M., Wan S., Lin J., and Wang Y., Hexagonal boron nitride catalyst in a fixed-bed reactor for exothermic propane oxidation dehydrogenation, Chemical Engineering Science, 186,142-51, 2018.
[11] Yosefi L, Haghighi M, Allahyari S, Ashkriz S., The beneficial use of HCl‐activated natural zeolite in ultrasound assisted synthesis of Cu/clinoptilolite–CeO2 nanocatalyst used for catalytic oxidation of diluted toluene in air at low temperature, Journal of Chemical Technology & Biotechnology, 90(4), 765-74, 2015.
[12] González MD, Cesteros Y, Salagre P., Comparison of dealumination of zeolites beta, mordenite and ZSM-5 by treatment with acid under microwave irradiation, Microporous and mesoporous materials, 144(1-3),162-70, 2011.
[13] Ates A, Hardacre C., The effect of various treatment conditions on natural zeolites: Ion exchange, acidic, thermal and steam treatments, Journal of colloid and interface science, 372(1), 130-40, 2012.
[14] Mesrar F, Kacimi M, Liotta LF, Puleo F, Ziyad M., Syngas production from dry reforming of methane over ni/perlite catalysts: effect of zirconia and ceria impregnation, International Journal of Hydrogen Energy, 43(36),17142-55, 2018.
[15] Omri A, Benzina M, Sono-activation of persulfate by Fe-expanded perlite catalyst for oxidative degradation of Orange G: synergy study, influence of parameters and phytotoxicity tests, Research on Chemical Intermediates, 7:1-23, 2022.
[16] Batista C, Teixeira V, Carneiro J, Structural and morphological characterization of magnetron sputtered nanocrystalline vanadium oxide films for thermochromic smart surfaces, Journal of Nano Research, 2, 21-30, 2008.
[17] Kara GK, Rahimi J, Niksefat M, Taheri-Ledari R, Rabbani M, Maleki A., Preparation and characterization of perlite/V2O5 nano-spheres via a novel green method: applied for oxidation of benzyl alcohol derivatives, Materials Chemistry and Physics, 250, 122991, 2020.
[18] Corregidor PF, Acosta DE, Destéfanis HA., Green synthesis of ZSM-5 zeolite prepared by hydrothermal treatment of perlite. Effect of chemical composition and characterization of the product, Science of Advanced Materials, 6(6), 1203-14, 2014.
[19] Govindarajan D, Uma Shankar V, Gopalakrishnan R, Supercapacitor behavior and characterization of RGO anchored V2O5 nanorods, Journal of Materials Science: Materials in Electronics,30(17),16142-55, 2019.
[20] Kapustin GI, Brueva TR, Klyachko AL, Beran S, Wichterlova B., Determination of the number and acid strength of acid sites in zeolites by ammonia adsorption: comparison of calorimetry and temperature-programmed desorption of ammonia, Applied catalysis, 42(2), 239-46, 1988.
[21] A.A. Lemonidou, L. Nalbandian, and I.A. Vasalos, Oxidative dehydrogenation of propane over vanadium oxide based catalysts: Effect of support and alkali promoter, Catal. Today, 61 , 333–341, 2000.
[22] K. Routray, K.R.S.K Reddy, and G. Deo, Oxidative dehydrogenation of propane on V2O5/Al2O3 and V2O5/TiO2 catalysts: understanding the effect of support by parameter estimation, Appl. Catal. A: Gen., 265, 103–113, 2004.
[23] F. Cavani, N. Ballarini, and A. Cericola, Oxidative dehydrogenation of ethane and propane: How far from commercial implementation?, Catal. Today, 127 ,113–131,2007.
[24] A. Löfberg, T. Giornelli, S. Paul, and E. Bordes-Richard, Catalytic coatings for structured supports and reactors: VOx/TiO2 catalyst coated on stainless steel in the oxidative dehydrogenation of propane, Appl. Catal. A: Gen., 391, 43–51, 2011.
[25] Ertl, G., Knözinger, H. and Weitkamp, J. eds., Handbook of heterogeneous catalysis, 2, 427-440, 1997.
[26] Mitran G, Ahmed R, Iro E, Hajimirzaee S, Hodgson S, Urdă A, Olea M, Marcu IC., Propane oxidative dehydrogenation over VOx/SBA-15 catalysts, Catalysis Today, 306, 260-7, 2018.
[27] Al-Ghamdi SA, de Lasa HI., Propylene production via propane oxidative dehydrogenation over VOx/γ-Al2O3 catalyst., Fuel, 128, 120-40, 2014.
[28] Solsona B, Blasco T, Nieto JL, Pena ML, Rey F, Vidal-Moya A., Vanadium oxide supported on mesoporous MCM-41 as selective catalysts in the oxidative dehydrogenation of alkanes, Journal of Catalysis, 203(2), 443-52, 2001.
[29] Xue XL, Lang WZ, Yan X, Guo YJ., Dispersed vanadium in three-dimensional dendritic mesoporous silica nanospheres: active and stable catalysts for the oxidative dehydrogenation of propane in the presence of CO2, ACS applied materials & interfaces, 9(18), 15408-23, 2017.
[30] Liu Q, Li J, Zhao Z, Gao M, Kong L, Liu J, Wei Y., Design, synthesis and catalytic performance of vanadium-incorporated mesoporous silica KIT-6 catalysts for the oxidative dehydrogenation of propane to propylene, Catalysis Science & Technology, 6(15), 5927-41, 2016.
[31] Ayandiran AA, Bakare IA, Binous H, Al-Ghamdi S, Razzak SA, Hossain MM., Oxidative dehydrogenation of propane to propylene over VO x/CaO–γ-Al2O3 using lattice oxygen, Catalysis Science & Technology, 6(13), 5154-67, 2016.