آلیاژ پلی(‌وینیل‌فروسن)/پلی‌بوتادی‌ان خاتمه‌یافته با هیدروکسیل (PVF/HTPB) به عنوان کاتالیست: تهیه،شناسایی و مقایسه

نوع مقاله : پژوهشی اصیل

نویسندگان

دانشگاه جامع امام حسین (ع)

چکیده
موضوع تحقیق: در میان کاتالیست‌های نرخ سوزش (BRCs) در کامپوزیت‌های پرانرژی، کاتالیست‌های بر پایه فروسنی عملکرد بهتری داشته ولی دارای مشکلاتی همچون فراریت است. از این رو استفاده از مشتقات فروسنی با هدف سازگارگردن با پیش‌پلیمر پلی­بوتادی­ان خاتمه­یافته با هیدروکسیل (HTPB) اخیراً در پژوهش‌های مرتبط با این حوزه مورد توجه قرار گرفته است.

روش تحقیق: در این پژوهش در بخش اول، مونومر وینیل فروسن (VFM) در سه شرایط مختلف با و بدون بنزوئیل پراُکساید (BPO) به عنوان آغازگر و با درصدهای مختلف مونومر وینیل فروسن) در حضور HTPB، به صورت درجا پلیمریزه شده تا پلی­(وینیل فروسن) (PVF) تهیه گردد. سپس، آلیاژهای PVF/HTPB حاصل با استفاده از آزمون‌های FT-IR، 1H NMR و GPC شناسایی شدند. در بخش دوم این پژوهش، کامپوزیت­های‌ پرانرژی حاوی آلیاژ PVF/HTPB تهیه و خواص حرارتی آن‌ها توسط آزمون TGA با کامپوزیت­های‌ پرانرژی حاوی کاتالیست­های رایج مقایسه شد.

نتایج اصلی: نتایج GPC نشان داد که پیک اصلی بزرگ‌تر و پهن‌تر شده است که به علت افزایش میزان متوسط وزن‌ مولکولی در آلیاژ PVF/HTPB­ باشد. نتایج حاصل از مقایسه حرارتی نشان داد که کامپوزیت‌های پرانرژی برپایه آلیاژ PVF/HTPB نسبت به کاتالیست‌های مرسوم عملکرد بهتری داشته و دمای تجزیه آمونیوم پرکلرات (AP) را بیشتر کاهش داده است. آلیاژ PVF/HTPB به عنوان یک کاتالیست نرخ سوزش در کامپوزیت‌های پرانرژی عمل می‌کند به نحوی که به رفع مشکل مهاجرت نیز به سبب آلیاژسازی درجا VFM به HTPB کمک نماید.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Poly (Vinyl Ferrocene)/Hydroxyl terminated polybutadiene (PVF/HTPB) blend as a Catalyst: Preparation, Characterization and Comparison

نویسندگان English

Artin Maleki
Abbas Kebritchi
Amin Amini
Imam Hossein Comprehensive University
چکیده English

Research Subject: Among the burning rate catalysts (BRCs), ferrocene-based ones have shown better performance; but show volatility problem. Therefore, the use of ferrocene derivatives in order to make compatible with hydroxyl terminated polybutadiene (HTPB) prepolymer, is a novel trend which is recently interested in the related researches.

Research Approach: In this research, at first, vinyl ferrocene monomer (VFM) were in-situ homopolymerized to prepare poly (vinyl ferrocene) (PVF)in the presence of hydroxyl terminated polybutadiene (HTPB) prepolymer at three different conditions(with and without BPO as initiator and different amounts of VFM).Then, blend of PVF/HTPB were characterized using FT-IR, 1HNMR and GPC analyzes. In the second part, energetic composites containing PVF/HTPB blend were prepared and thermal properties of prepared samples investigated and compared with energetic composites containing conventional catalysts using TGA.

Main Results: The GPC results showed that the main peak was larger and wider due to the increase in the average molecular weight of PVF/HTPB blend. Comparison of thermal analysis showed that energetic composites based on PVF/HTPB blend catalyst perform better than common catalysts and more reduces the AP decomposition temperature. PVF/HTPB blend act as a potential BRC in energetic composites in which migration problem reduce due to in-situ blending of VFM to HTPB.

کلیدواژه‌ها English

Burning rate catalysts
Ferrocene
Vinyl ferrocene
Ferrocene based catalyst
energetic composite
[1] Cho BS. and Noh ST. Thermal Properties of Polyurethane Binder with 2‐(Ferrocenylpropyl) Dimethylsilane‐grafted Hydroxyl‐terminated Polybutadiene, Journal of Applied Polymer Science, 121(6), 3560-8, 2011.
[2] Joseph G., Klaubert EC., John SR., Solid Composite Propellants Containing Burning Rate Catalysts. US Pat. 3,386,869, 1968.
[3] Gao JM., Wang L., Yu HJ., Xiao AG., Ding WB. Recent Research Progress in Burning Rate Catalysts. Propellants, Explosives, Pyrotechnics, 36(5), 404-9, 2011.
[4] Gao J., Wang L., Tai YL., Wang J., Huo J., Amin AM., Yu H., Ding W. Study on Poly(errocenylsilane) and its Promotive Effect to Decomposition of Ammonium Perchlorate. Journal of Propulsion and Power, 27(5), 1143-5, 2011.
[5] Pang, W., Li, Y., DeLuca, L.T., Liang, D., Qin, Z., Liu, X., Xu, H. and Fan, X.,. Effect of Metal Nanopowders on the Performance of Solid Rocket Propellants: A Review. Nanomaterials, 11(10), p.2749, 2021.
[6] Elbasuney, S. and Yehia, M., Ferric oxide colloid: A novel nano-catalyst for solid propellants. Journal of Inorganic and Organometallic Polymers and Materials, 30(3), pp.706-713, 2020.
[7] Vara, J.A., Dave, P.N. and Chaturvedi, S., Investigating catalytic properties of nanoferrites for both AP and nano-AP based composite solid propellant. Combustion Science and Technology, 193(13), pp.2290-2304, 2021.
[8] Chen, T., Hu, Y.W., Zhang, C. and Gao, Z.J., Recent progress on transition metal oxides and carbon-supported transition metal oxides as catalysts for thermal decomposition of ammonium perchlorate. Defence Technology, 17(4), pp.1471-1485, 2021.
[9] Ukhin, K.O., Kondrashova, N.B., Valtsifer, V.A., Oshchepkova, T.E., Savastyanova, M.A., Strelnikov, V.N. and Mokrushin, I.G., Metal Oxides/Carbon Black (MOs/CB) Composites and Their Effect on the Thermal Decomposition of Ammonium Perchlorate. Propellants, Explosives, Pyrotechnics, 46(11), pp.1696-1708, 2021.
[10] Gromov, A.A., Slusarsky, K.V., Sergienko, A.V., Popenko, E.M., Dzidziguri, E.L., Larionov, K.B. and Mishakov, I.V., Aluminized Solid Propellants Loaded with Metals and Metal Oxides: Characterization, Thermal Behavior, and Combustion. In Innovative Energetic Materials: Properties, Combustion Performance and Application (pp. 157-182). Springer, Singapore, 2020.
[11] Kretić, D.S., Veljković, I.S., Đunović, A.B. and Veljković, D.Ž., Chelate coordination compounds as a new class of high-energy materials: The case of nitro-bis (acetylacetonato) complexes. Molecules, 26(18), p.5438, 2021.
[12] Amin, B.U., Yu, H., Wang, L., Fahad, S., Nazir, A., Haq, F., Mahmood, S., Uddin, M.A., Shen, D. and Liang, R., Synthesis and Anti-migration Studies of Ferrocene-Based Amides as Burning Rate Catalysts. Journal of Inorganic and Organometallic Polymers and Materials, 31(6), pp.2511-2520, 2021.
[13] Zhang, M., Zhao, F., Wang, Y., Chen, X., Pei, Q., Xu, H., Hao, H., Yang, Y. and Li, H., Evaluation of graphene-ferrocene nanocomposite as multifunctional combustion catalyst in AP-HTPB propellant. Fuel, 302, p.121229, 2021.
[14] Usman, M., Yu, H., Wang, L., Titinchi, S., Khan, A., Nazir, A., Elshaarani, T., Fahad, S. and ul Amin, B.,. Synthesis of poly (2-(methacryloyloxy) ethyl ferrocene carboxylate-co-glycidyl methacrylic acid) s and their anti-migration and burning rate catalytic properties. Journal of Thermal Analysis and Calorimetry, pp.1-18, 2021.
[15] Dubey BL., Nath N., Tripathi A., Tiwari N. Catalysed Combustion of Ammonium Perchlorate, Polystyrene and their Composite Propellants. Indian Journal of Engineering Material and Science, 1, 341-349, 1994.
[16] Grythe KF., Hansen FK. Diffusion Rates and The Role of Diffusion in Solid Propellant Rocket Motor Adhesion. Journal of applied polymer science, 103(3), 1529-38, 2007.
[17] Tang, P., Yang, B., Li, R., Wang, Y., Li, X. and Yang, G.,. Ti3C2 MXene: A reactive combustion catalyst for efficient burning rate control of ammonium perchlorate based solid propellant. Carbon. 2021.
[18] Xu, S., Pang, A.M., Wang, Y., Pan, X.Z., Li, S.W., Li, H.T. and Kong, J., A Review on the Use of Burning Rate Suppressants in AP‐Based Composite Propellants. Propellants, Explosives, Pyrotechnics. 2021.
[19] Yadav, N., Srivastava, P.K. and Varma, M., Recent advances in catalytic combustion of AP-based composite solid propellants. Defence Technology, 17(3), pp.1013-1031. 2021.
[20] Kishore K., Verneker VP., Sunitha MR. Effect of Catalyst Concentration on Burning Rate of Composite Solid Propellants. AIAA Journal, 15(11), 1649-51, 1977.
[21] PittmanC. U. Location of Action of Burning Rate Catalysts in Composite Propellant Combustion. AIAA. Journal, 7(2), 328- 34, 1969.
[22] Dyagileva L.M., Andreev B.Ya. Products of The Thermal Decomposition of Ferrocenes. Trudy Klim. Khim. Tekhnol, 2, 126-27, 1973.
[23] Kebritchi A.Investigation of Ferrocene Polymers as Catalysts for High Energy Composites. Iranian Journal of Research and Development of Polymer Technology, 4(1),45-59, 1395.
[24] Stephens WD., Ashmore CI., Atlantic Research Corp, assignee. Solid Propellant Containing Diferrocenyl Ketone. US Pat. 4,318,760, 1982.
[25] Subramanian K., Synthesis and Characterization of Poly(vinyl ferrocene) Grafted Hydroxyl-Terminated Poly(butadiene): A Propellant Binder with a Built-In Burn-Rate Catalyst.Journal of Polymer Science Part A: Polymer Chemistry, 37(22), 4090-9, 1999.
[26] Mahanta A.K. and Pathak D.D., HTPB-polyurethane: AVersatile Fuel Binder for Composite Solid Propellant,Rijeka, Croatia, Vol. 1, 229-262, 2012.
[27] Vilar WD., Menezes SM., Akcelrud L. Characterization of Hydroxyl-terminated Polybutadiene. Polymer Bulletin, 33(5), 563-70, 1994.
[28] Zhou Q., Jie S. and Li B.G. Preparation of Hydroxyl-Terminated Polybutadiene with High Cis-1, 4 Content.Industrial & Engineering Chemistry Research, 53, 17884-17893, 2014.
[29] Alver Ö., Parlak C. FT-IR, NMR Spectroscopic and Quantum Mechanical Investigations of Two Ferrocene Derivatives. Bulletin of the Chemical Society of Ethiopia, 31(1), 63-74, 2017.
[30] Ghanegharebagh M.,Synthesis of NitratedHydroxyl-terminated Polybutadiene resin (NHTPB)composites, MSc Thesis, Imam Hossein University, February 2018.
[31] Osborn SW., Solid Composite Propellants with Salts of Ferrocene Monosulfonic Acid as Burning Rate Modifiers. US Pat. 3,607,471, 1971.
[32] Ashmore CI., Combs Jr CS., Stephens WD., Solid Propellant Having Incorporated Therein A Ferrocene Combustion Catalyst. US Pat. 4,108,696, 1978.
[33] Teymooriofrad R., Parchebaf M.,Rahimpoor K., Aghaeipoor A.,A Novel Method for Synthesis of 4-Hydroxybutylferrocene as Precursor in Butacene Synthesis,Journal of Energetic Materials, 12 (1), 3-10, 2017
[34] Saravanakumar D., Sengottuvelan N., Narayanan V., Kandaswamy M., Varghese TL. Burning‐rate Enhancement of A High‐energy Rocket Composite Solid Propellant based on Ferrocene‐grafted Hydroxyl‐terminated Polybutadiene Binder. Journal of applied polymer science, 119(5), 2517-24, 2011.