1- Bottoms, R.P. A Study on Thereaction between CO2 and Alkanolamines in aqueous Solutions, U.S. Patent 1783901, 1930.
2- Walden, P. Molecular Weights and Electrical Conductivity of Several Fused Salts. Bull. Acad. Imper. Sci. (St. Petersburg), 1800, 1914.
3- Kotian-Nejad, H.,Comparison of Two Absorption Methods of SO2 with water and [Bmim][BF4] Ionic Liquid, the 6th National conference & Exhibition on Environmental Engineering, Tehran university, 17-21 October, 2012.
4- Zhao, Y., Zhang, X., Zeng, S., Zhou, Q., Dong, H., Tian, X., & Zhang, S. Density, Viscosity, and Performances of Carbon dioxide Capture in 16 Absorbents of amine+ ionic liquid+ H2O, ionic liquid+ H2O, and amine+ H2O Systems. Journal of Chemical & Engineering Data, 55(9), 3513-3519, 2010.
5- Ahmady, A., Hashim, M. A., & Aroua, M. K. Experimental investigation on the Solubility and initial rate of Absorption of CO2 in aqueous Mixtures of Methyldiethanolamine with the ionic liquid 1-Butyl-3-Methylimidazolium tetrafluoroborate. Journal of Chemical & Engineering Data, 55(12), 5733-5738, 2010.
6- Quiñones-Cisneros, S. E., Zéberg-Mikkelsen, C. K., & Stenby, E. H. The Friction theory (f-theory) for Viscosity modeling. Fluid Phase Equilibria, 169(2), 249-276, 2000.
7- Abolala, M., Peyvandi, K., & Varaminian, F. (2015). Modeling the Viscosity of Pure imidazolium-based ionic liquids using SAFT-VR-Mie EoS. Fluid Phase Equilibria, 394, 61-70, 2015.
8- Macías-Salinas, R. Viscosity Modeling of Ionic Liquids Using the Friction Theory and a Simple Cubic Equation of State. Industrial & Engineering Chemistry Research, 57(3), 1109-1120, 2018.
9- Quiñones-Cisneros, S. E., Zéberg-Mikkelsen, C. K., & Stenby, E. H. One Parameter Friction theory models for Viscosity. Fluid Phase Equilibria, 178(1-2), 1-16, 2001.
10- Quiñones-Cisneros, S. E., & Deiters, U. K. Generalization of the Friction theory for Viscosity modeling. The Journal of Physical Chemistry B, 110(25), 12820-12834, 2006.
11- Macías-Salinas, R. Viscosity Modeling of Ionic Liquids Using the Friction theory and a Simple Cubic Equation of State. Industrial & Engineering Chemistry Research, 57(3), 1109-1120, 2018.
12- Hill, T. L. Statiscal-Thermodynamics. Addison-Wesley, 1960.
13- Quiñones‐Cisneros, S. E., Zéberg‐Mikkelsen, C. K., Fernández, J., & García, J. General Friction theory Viscosity model for the PC‐SAFT Equation of state. AIChE journal, 52(4), 1600-1610, 2006.
14- Sanmamed, Y. A., González-Salgado, D., Troncoso, J., Romani, L., Baylaucq, A., & Boned, C. Experimental methodology for Precise determination of Density of RTILs as a Function of Temperature and Pressure using vibrating tube densimeters. The Journal of Chemical Thermodynamics, 42(4), 553-563, 2010.
15- Tomida, D., Kumagai, A., Qiao, K., & Yokoyama, C. Viscosity of [bmim][PF 6] and [bmim][BF 4] at high Pressure. International journal of Thermophysics, 27(1), 39-47, 2006.
16- Harris, K. R., Kanakubo, M., & Woolf, L. A. Temperature and Pressure dependence of the Viscosity of the ionic liquid 1-Butyl-3-Methylimidazolium tetrafluoroborate: Viscosity and Density relationships in ionic liquids. Journal of Chemical & Engineering Data, 52(6), 2425-2430, 2007.
17- Ahosseini, A., & Scurto, A. M. Viscosity of imidazolium-based ionic liquids at elevated Pressures: cation and anion effects. International Journal of Thermophysics, 29(4), 1222-1243, 2008.
18- Harris, K. R., Woolf, L. A., & Kanakubo, M. Temperature and Pressure dependence of the Viscosity of the ionic liquid 1-Butyl-3-Methylimidazolium hexafluorophosphate. Journal of Chemical & Engineering Data, 50(5), 1777-1782, 2005.
19- Harris, K. R., Kanakubo, M., & Woolf, L. A. Temperature and Pressure dependence of the Viscosity of the ionic liquids 1-Hexyl-3-Methylimidazolium hexafluorophosphate and 1-Butyl-3-Methylimidazolium bis (trifluoromethylsulfonyl) imide. Journal of Chemical & Engineering Data, 52(3), 1080-1085, 2007.
20- Harris, K. R., Kanakubo, M., & Woolf, L. A. Temperature and Pressure dependence of the Viscosity of the ionic liquids 1-Methyl-3-Octylimidazolium Hexafluorophosphate and 1-Methyl-3-Octylimidazolium tetrafluoroborate. Journal of Chemical & Engineering Data, 51(3), 1161-1167, 2006.
21- Tomida, D., Kumagai, A., Kenmochi, S., Qiao, K., & Yokoyama, C. Viscosity of 1-Hexyl-3-Methylimidazolium Hexafluorophosphate and 1-Octyl-3-Methylimidazolium hexafluorophosphate at high Pressure. Journal of Chemical & Engineering Data, 52(2), 577-579,2007.
22- Song, D., & Chen, J. Density and Viscosity data for Mixtures of ionic liquids with a Common anion. Journal of Chemical & Engineering Data, 59(2), 257-262, 2014.
23- Navia, P., Troncoso, J., & Romaní, L. Viscosities for ionic liquid binary Mixtures with a Common ion. Journal of Solution Chemistry, 37(5), 677-688, 2008.
24- Akbar, M. M., & Murugesan, T. Thermophysical Properties for the binary Mixtures of 1-Hexyl-3-Methylimidazolium bis (trifluoromethylsulfonyl) imide [hmim][Tf2N]+ N-Methyldiethanolamine (MDEA) at Temperatures (303.15 to 323.15) K. Journal of Molecular Liquids, 169, 95-101, 2012.
25- Akbar, M. M., & Murugesan, T. Thermophysical Properties of 1-Hexyl-3-Methylimidazolium tetrafluoroborate [hmim][BF4]+ N-Methyldiethanolamine (MDEA) at Temperatures (303.15 to 323.15) K. Journal of Molecular Liquids, 177, 54-59, 2013.
26- Haghtalab, A., & Shojaeian, A. Volumetric and Viscometric behaviour of the binary systems of N-Methyldiethanolamine and Diethanolamine with 1-Butyl-3-Methylimidazolium Acetate at Various Temperatures. The Journal of Chemical Thermodynamics, 68, 128-137, 2014.
27- Yin, Y., Zhu, C., & Ma, Y. Volumetric and Viscometric Properties of binary and ternary Mixtures of 1-Butyl-3-Methylimidazolium Tetrafluoroborate, Monoethanolamine and Water. The Journal of Chemical Thermodynamics, 102, 413-428, 2016.
28- Shojaeian A, Hanifehei M, Fatoorehchi H. Density, Viscosity, and Refractive Index Measurements for Binary Mixtures of N-Methyldiethanolamine (MDEA), Diethanolamine (DEA), and 2-Amino-2-Methyl-1-Propanol (AMP) with 1-Ethyl-3-Methylimidazolium Acetate ([Emim][Ac]). Journal of Chemical & Engineering Data, 66, 9, 3520–3530, 2021.
29- NIST/TDE, NIST (National Institute of Standards and Technology), Thermo Data Engine (Aspen Plus V8.0), Applied Chemicals and Materials Division, 2013.
30- Haghbakhsh, R., Parvaneh, K., & Shariati, A. Viscosities of Pure Ionic Liquids Using Combinations of Free Volume Theory or Friction Theory with the Cubic, the Cubic Plus Association, and the Perturbed-Chain Statistical Associating Fluid Theory Equations of State at High Pressures. Industrial & Engineering Chemistry Research, 56(8), 2247-2258,2017.
31- Shen, G., Held, C., Mikkola, J. P., Lu, X., & Ji, X. Modeling the viscosity of ionic liquids with the electrolyte perturbed-chain statistical association fluid theory. Industrial & Engineering Chemistry Research, 53(52), 20258-20268, 2014.