تهیه و مطالعه رفتار فیزیکی و مکانیکی بیونانوکامپوزیت‌های پلی لاکتیک اسید تقویت شده با نانوکریستال سلولز و نانو ذرات نقره

نوع مقاله : پژوهشی اصیل

نویسندگان

1 گروه مهندسی پلیمر دانشگاه صنعتی قم

2 هیات علمی گروه مهندسی پلیمر دانشگاه صنعتی قم

3 عضو هیات علمی گروه مهندسی پلیمر دانشگاه صنعتی قم

4 فارغ التحصیل دانشگاه صنعتی قم

چکیده
موضوع تحقیق: امروزه یکی از موضوعات مورد علاقه پژوهشگران استفاده از ترکیبات زیست تخریب پذیر با خواص مکانیکی و حرارتی بالاست. پلی لاکتیک اسید، پلی استری آلیفاتیک، زیست تخریب پذیر و انعطاف پذیر بوده که دارای ضعف‌هایی همچون عبورپذیری زیاد در برابر بخار آب و گازها، دمای انتقال شیشه‌ای کم، پایداری گرمایی ضعیف، ترد و شکننده بودن می‌باشد. یکی از روش‌هایی که برای بهبود خواص این زیست پلیمر در سال های اخیر مورد توجه قرار گرفته است، استفاده از پرکننده‌ها در مقیاس نانومتری و تولید بیونانوکامپوزیت‌ها می‌باشد. این تحقیق با هدف بررسی تاثیر حضور همزمان نانوکریستال سلولز و نانونقره بر رفتار مکانیکی، حرارتی و عبورپذیری نسبت به بخار آب فیلم‌های بر پایه پلی لاکتیک اسید انجام گردید.

روش‌ تحقیق: فیلم‌های پلی لاکتیک اسید و بیونانوکامپوزیت‌های آن حاوی مقادیر مختلف نانوکریستال سلولز (۰۱/۰، ۰۳/۰ و ۰۵/۰ گرم) و نانونقره (۰۱/۰ گرم) با استفاده از روش قالب‌گیری حلال تهیه شدند. برای بهبود سازگاری و قابلیت اختلاط‌پذیری بیشتر نانوکریستال سلولز با پلی لاکتیک اسید، از واکنش آن با استیک انیدرید استفاده گردید. طیف‌سنجی FTIR، آزمون کشش، خواص حرارتی (DSC)، آزمون مهاجرت و بررسی خاصیت ضدباکتریایی برای مطالعه ویژگی‌های نمونه‌ها مورد استفاده قرار گرفت. برای ارزیابی عبورپذیری فیلم‌ها، میزان نفوذ پذیری نسبت به بخار آب نمونه‌ها نیز اندازه‌گیری شد.

نتایج اصلی: با افزودن نانوکریستال سلولز، دمای انتقال شیشه‌ای (Tg) و دمای مذاب (Tm) افزایش نشان دادند. وجود نانوکریستال سلولز موجب افزایش استحکام کششی و مدول الاستیسیته بیونانوکامپوزیت ها نسبت به پلی لاکتیک اسید خالص گردید. با افزودن نانوکریستال سلولز، عبورپذیری تا حدود 25 درصد کاهش یافت. با افزایش میزان نانوکریستال سلولز، میزان تورم و جذب آب نمونه‌ها به طور قابل توجهی افزایش پیدا کرد. میزان مهاجرت نمونه‌ها نیز پس از افزودن نانوسلولز کاهش یافت.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Preparation and study of physical and mechanical behavior of polylactic acid bionanocomposites reinforced with Cellulose Nanocrystal and silver nanoparticles

نویسندگان English

Seyed Mehdi Mirabolghasemi 1
Mohsen Najafi 2
Alireza Azizi 3
Mehdi Haji Bagherian 4
1 Department of Polymer Engineering, Faculty of Engineering, Qom University of Technology
2 Department of Polymer Engineering, Faculty of Engineering, Qom University of Technology
3 Department of Polymer Engineering, Faculty of Engineering, Qom University of Technology
4 Department of Polymer Engineering, Faculty of Engineering, Qom University of Technology
چکیده English

Research subject: Biodegradable compounds with high mechanical and thermal properties are one of the intersting research topics. Polylactic acid is an aliphatic polyester with high biodegradability and flexibility. It, however, suffers from several weaknesses such as high permeability to water vapor and gases, low glass transition temperature, poor thermal stability and brittleness which can be improved by the incorporation of nano-scale fillers giving rise to bionanocomposites. The aim of this study was to investigate the effect of the simultaneous incorporation of cellulose nanocrystals and nanosilver on the mechanical, thermal and water vapor permeability behavior of polylactic acid-based films.

Research approach: Polylactic acid films and their bionanocomposites containing different levels of cellulose nanocrystals (0.01, 0.03 and 0.05 g) and nanosilver (0.01 g) were prepared by solution casting method. To improve compatibility and miscibility of the polymer, cellulose nanocrystals were reacted with acetic anhydride and modified. FTIR spectroscopy, tensile test, thermal properties (DSC), migration test and antibacterial properties were used to study the properties of the samples. The water vapor permeability of the samples were also measured.

Main results: The addition of cellulose nanocrystals, increased the glass transition temperature (Tg) and melting point (Tm) of the samples. The presence of cellulose nanocrystals increased the tensile strength and modulus of elasticity of the bionanocomposite relative to pure polylactic acid. With the addition of cellulose nanocrystals, permeability was reduced by about 25%. As the amount of cellulose nanocrystals increased, the swelling and water absorption of the samples increased significantly. The migration rate of the samples also decreased after the addition of nanocellulose.

کلیدواژه‌ها English

Bionanocomposites
Cellulose nanocrystals
Nanosilver
Polylactic acid
Antibacterial properties
1. Takkalkar, P., Ganapathi, M., Dekiwadia, C., Nizamuddin, S., Griffin, G., & Kao, N., Preparation of Square-Shaped Starch Nanocrystals/Polylactic Acid Based Bio-nanocomposites: Morphological, Structural, Thermal and Rheological Properties, Waste and Biomass Valorization, 1-15, 2018.
2. Sorrentino, A., Gorrasi, G., & Vittoria, V., Potential perspectives of bio-nanocomposites for food packaging applications, Trends in Food Science & Technology, 18(2), 84-95, 2007.
3. Satti, S. M., Shah, A. A., Marsh, T. L., & Auras, R. , Biodegradation of Poly (lactic acid) in Soil Microcosms at Ambient Temperature: Evaluation of Natural Attenuation, Bio-augmentation and Bio-stimulation, Journal of Polymers and the Environment, 1-10, 2018.
4. Raquez, J. M., Habibi, Y., Murariu, M., & Dubois, P., Polylactide (PLA)-based nanocomposites, Progress in Polymer Science, 38(10-11), 1504-1542, 2013.
5. Shayan, M., Azizi, H., Ghasemi, I., Karrabi, M., Influence of modified starch and nanoclay particles on crystallization and thermal degradation properties of cross-linked poly(lactic acid), Journal of Polymer Research, 26:238, 1-12, 2019.
6. Manafi, P., Ghasemi, I., Karrabi, M., Azizi, H., Manafi, M., Crystallization and Morphology of Nanocomposites Based on Poly(lactic acid)/Graphene Nanoplatelets: Effect of Nanoparticles Functionalization, Iranian Journal of Polymer Science and Technology, 27(5), 383-394, 2015.
7. Sorrentino, A., Gorrasi, G., & Vittoria, V., Potential perspectives of bio-nanocomposites for food packaging applications, Trends in Food Science & Technology, 18(2), 84-95, 2007.‏
8. Choudalakis, G., & Gotsis, A. D., Permeability of polymer/clay nanocomposites: a review, European polymer journal, 45(4), 967-984, 2009.
9. Bhat, A. H., Dasan, Y. K., Khan, I., Soleimani, H., & Usmani, A., Application of nanocrystalline cellulose: Processing and biomedical applications, Cellulose-Reinforced Nanofibre Composites, 215-240, 2017.
10. Cunha, A. G., & Gandini, A. , Turning polysaccharides into hydrophobic materials: a critical review. Part 1. Cellulose, Cellulose, 17(5), 875-889, 2010.
11. Matsumura, H., Sugiyama, J., & Glasser, W. G., Cellulosic nanocomposites. I. Thermally deformable cellulose hexanoates from heterogeneous reaction, Journal of Applied Polymer Science, 78(13), 2242-2253, 2000.
12. Gousse, C., Chanzy, H., Cerrada, M. L., & Fleury, E., Surface silylation of cellulose microfibrils: preparation and rheological properties, Polymer, 45(5), 1569-1575, 2004.
13. Almasi, H., Ghanbarzadeh, B., Dehghannia, J., Entezami, A., Khosrowshahi Asl, A., Studying the effect of modified cellulose nanofibers on the functional properties of poly (lactic acid) based biodegradable packaging, Journal of Research and Innovation in Food Science and Technology, 2(3), 205-218, 2013.
14. I. Moran, J., N. Ludueña, L., Phuong, V. T., Cinelli, P., Lazzeri, A. & A. Alvarez, V., Processing Routes for the Preparation of Poly(lactic acid)/Cellulose- Nanowhisker Nanocomposites for Packaging Applications, Polymers & Polymer Composites, 24(5), 341-346, 2016.
15. Bhiogade, A. & Kannan, M., Studies on thermal and degradation kinetics of cellulose micro/nanoparticle filled polylactic acid (PLA) based nanocomposites, Polymers & Polymer Composites, 29, 1-14, 2021.
16. Lin, N., Huang, J., Chang, P. R., Feng, J., & Yu, J., Surface acetylation of cellulose nanocrystal and its reinforcing function in poly (lactic acid), Carbohydrate Polymers, 83(4), 1834-1842, 2011.
17. Xu, C., Chen, J., Wu, D., Chen, Y., Lv, Q., & Wang, M., Polylactide/acetylated nanocrystalline cellulose composites preparedby a continuous route: A phase interface-property relation study, Carbohydrate polymers, 146, 58-66, 2016.
18. Hossain, K. M. Z., Ahmed, I., Parsons, A. J., Scotchford, C. A., Walker, G. S., Thielemans, W. & Rudd, C. D., Physico-chemical and mechanical properties of nanocomposites prepared using cellulose nanowhiskers and poly (lactic acid), Journal of Materials Science, 47(6), 2675-2686, 2012.
19. Paula, E. L. D., Mano, V., Duek, E. A. R. & Pereira, F. V., Hydrolytic degradation behavior of PLLA nanocomposites reinforced with modified cellulose nanocrystals, Química Nova, 38(8), 1014-1020, 2015.
20. KORD, B. and ROOHANI, M., THERMAL PROPERTIES AND FIRE BEHAVIOR OF PLA NANOCOMPOSITE FILMS, JOURNAL OF WOOD AND FOREST SCIENCE AND TECHNOLOGY, 23, 185-201, 2016.
21. Fortunati, E., Armentano, I., Zhou, Q., Iannoni, A., Saino, E., Visai, L. & Kenny, J. M. , Multifunctional bionanocomposite films of poly (lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydrate polymers, 87(2), 1596-1605, 2012.
22. Jonoobi, M., Mathew, A. P., Abdi, M. M., Makinejad, M. D. & Oksman, K., A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion, Journal of Polymers and the Environment, 20(4), 991-997, 2012.
23. Kord, B., Jari, E., Najafi, A., & Tazakorrezaie, V., Effect of nanoclay on the decay resistance and physicomechanical properties of natural fiber-reinforced plastic composites against white-rot fungi (Trametes versicolor), Journal of Thermoplastic Composite Materials, 27(8), 1085-1096, 2014.
24. Roohani, M., Habibi, Y., Belgacem, N. M., Ebrahim, G., Karimi, A. N. & Dufresne, A., Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites, European polymer journal, 44(8), 2489-2498, 2008.
25. Sanchez-Garcia, M. D., Gimenez, E., Lagaron J. M., Development and characterization of novel nanobiocomposites of bacterial poly(3- hydroxybutirate), layered silicates and poly(e-caprolactone), Journal of Applied Polymer Science, 108, 2787-2801, 2008.
26. Sanchez-Garcia, M. D., Gimenez, E., Lagaron, J. M., Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers, Carbohydrate Polymers, 71, 235-244, 2008.
27. Paralikar, S. A., Simonsen, J., & Lombardi, J., Poly (vinyl alcohol)/cellulose nanocrystal barrier membranes, Journal of Membrane Science, 320(1-2), 248-258, 2008.
28. De Rodriguez, N. L. G., Thielemans, W., & Dufresne, A., Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites, Cellulose, 13(3), 261-270, 2006.
29. Yew, G. H., Yusof, A. M., Ishak, Z. M., & Ishiaku, U. S., Water absorption and enzymatic degradation of poly (lactic acid)/rice starch composites, Polymer Degradation and Stability, 90(3), 488-500, 2005.
30. Singh, G., Kaur, N., Bhunia, H., Bajpai, P. K., & Mandal, U. K., Degradation behaviors of linear low‐density polyethylene and poly (L‐lactic acid) blends, Journal of Applied Polymer Science, 124(3), 1993-1998, 2012.
31. Fortunati, E., Peltzer, M., Armentano, I., Torre, L., Jiménez, A., & Kenny, J. M., Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites, Carbohydrate polymers, 90(2), 948-956, 2012.
32. Li, S. M., Jia, N., Ma, M. G., Zhang, Z., Liu, Q. H., & Sun, R. C., Cellulose–silver nanocomposites: Microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property, Carbohydrate polymers, 86(2), 441-447, 2011.