[1] Ye S., Jiang L., Wu J., Su C., Huang C., Liu X. and Shao W., Flexible Amoxicillin-Grafted Bacterial Cellulose Sponges for Wound Dressing: In Vitro and in Vivo Evaluation, ACS Applied Materials & Interfaces, 10, 5862–5870, 2018.
[2] Fu F., Gu J., Xu X., Xiong Q., Zhang Y., Liu X. and Zhou J., Interfacial assembly of ZnO-cellulose nanocomposite films via a solution process: a one-step biomimetic approach and excellent photocatalytic properties, Cellulose, 24, 147–162, 2017.
[3] Wang P., Zhao J., Xuan R., Wang Y., Zou C., Zhang Z., Wan Y. and Xu Y., Flexible and monolithic zinc oxide bionanocomposite foams by a bacterial cellulose mediated approach for antibacterial applications, Dalton Transactions, 43, 6762–6768, 2014.
[4] Khalid A., Khan R., Ul-Islam M., Khan T. and Wahid F., Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds, Carbohydrate Polymers, 164, 214–221, 2017.
[5] ElNahrawy A.M., Haroun A.A., Hamadneh I., Al-Dujaili A.H. and Kamel S., Conducting cellulose/TiO2 composites by in situ polymerization of pyrrole, Carbohydrate Polymers, 168, 182–190, 2017.
[6] Wu X., Chabot V.L., Kim B.K., Yu A., Berry R.M. and Tam K.C., Cost-effective and Scalable Chemical Synthesis of Conductive Cellulose Nanocrystals for High-performance Supercapacitors, Electrochimca Acta, 138, 139–147, 2014.
[7] Shi Z., Gao H., Feng J., Ding B., Cao X., Kuga S., Wang Y., Zhang L. and Cai J., In Situ Synthesis of Robust Conductive Cellulose/Polypyrrole Composite Aerogels and Their Potential Application in Nerve Regeneration, Angewandte Chemie International Edition, 53(21), 5380–5384, 2014.
[8] Zhou S., Wang M., Chen X. and Xu F., Facile Template Synthesis of Microfibrillated Cellulose/Polypyrrole/Silver Nanoparticles Hybrid Aerogels with Electrical Conductive and Pressure Responsive Properties, ACS Sustainable Chemistry & Engineering, 3(12), 3346–3354, 2015.
[9] Ning C., Zhou Z., Tan G., Zhu Y. and Mao C., Electroactive polymers for tissue regeneration: Developments and perspectives, Progress in Polymer Science, 81, 144–162, 2018.
[10] Sannino A., Demitri C. and Madaghiele M., Biodegradable Cellulose-based Hydrogels: Design and Applications, Materials, 2(2), 353–373, 2009.
[11] نوری حسین آبادی, شهسواری, شاداب, وزیری یزدی, همتی, & آزاده. (2019). فرمولاسیون نانو الیاف پروتئینی کلاژن-سیکلودکسترین حاوی ذرات نانو رس با استفاده از فرآیند الکتروریسی. علوم و صنایع غذایی ایران, 16(88), 303-313.
[12] Hosseini H., Kokabi M. and Mousavi S.M., Conductive bacterial cellulose/multiwall carbon nanotubes nanocomposite aerogel as a potentially flexible lightweight strain sensor, Carbohydrate Polymers, 201, 228–235, 2018.
[13] Lay M., Méndez J.A., Delgado-Aguilar M., Bun K.N. and Vilaseca F., Strong and electrically conductive nanopaper from cellulose nanofibers and polypyrrole, Carbohydrate Polymers, 152, 361–369, 2016.
[14] Hosseini H., Kokabi M. and Mousavi S.M., Dynamic mechanical properties of bacterial cellulose nanofibres, Iranian Polymer Journal, 27, 433–443, 2018.
[15] Wan C. and Li J., Cellulose aerogels functionalized with polypyrrole and silver nanoparticles: In-situ synthesis, characterization and antibacterial activity, Carbohydrate Polymers, 146, 362–367, 2016.
[16] Picheth G.F., Pirich C.L., Sierakowski M.R., Woehl M.A, Sakakibara C.N., de Souza C.F., Martin A.A., da Silva. R. and de Freitas R.A., Bacterial cellulose in biomedical applications: A review, International Journal of Biological Macromolecules, 104, 97–106, 2017.
[17] Raisi, A., Asefnejad, A., Shahali, M., Doozandeh, Z., Kamyab Moghadas, B., Saber-Samandari, S., & Khandan, A.. A soft tissue fabricated using a freeze-drying technique with carboxymethyl chitosan and nanoparticles for promoting effects on wound healing. Journal of Nanoanalysis, 7(4), 262-274. 2022.
[18] Foroutan, S., Hashemian, M., Khosravi, M., Nejad, M. G., Asefnejad, A., Saber-Samandari, S., & Khandan, A. . A Porous Sodium Alginate-CaSiO 3 Polymer Reinforced with Graphene Nanosheet: Fabrication and Optimality Analysis. Fibers and Polymers, 22(2), 540-549. 2021.
[19] Raisi, A., Asefnejad, A., Shahali, M., Kazerouni, Z. A. S., Kolooshani, A., Saber Samandari, S., ... & Khandan, A.. Preparation, Characterization, and Antibacterial Studies of N, O carboxymethyl Chitosan as a Wound Dressing for Bedsore Application. Archives of Trauma Research¦ Volume XX¦ Issue XX¦ Month, 2. 2020.
[20] Jamnezhad, S., Asefnejad, A., Motififard, M., Yazdekhasti, H., Kolooshani, A., Saber-Samandari, S., & Khandan, A.. Development and investigation of novel alginate-hyaluronic acid bone fillers using freeze drying technique for orthopedic field. Nanomedicine Research Journal, 5(4), 306-315. 2020.
[21] Hosseini, S. M., Shahrousvand, M., Shojaei, S., Khonakdar, H. A., Asefnejad, A., & Goodarzi, V.. Preparation of superabsorbent eco-friendly semi-interpenetrating network based on cross-linked poly acrylic acid/xanthan gum/graphene oxide (PAA/XG/GO): Characterization and dye removal ability. International journal of biological macromolecules, 152, 884-893. 2020.
[22] Hosseini, H., Teymouri, M., Saboor, S., Khalili, A., Goodarzi, V., Hajipoor, F. P., ... & Bagheri, H.. Challenge between sequence presences of conductive additives on flexibility, dielectric and supercapacitance behaviors of nanofibrillated template of bacterial cellulose aerogels. European Polymer Journal, 115, 335-345. 2019.
[23] Foroutan, S., Hashemian, M., & Khandan, A.. A novel porous graphene scaffold prepared using Freeze-drying technique for orthopedic approaches: Fabrication and buckling simulation using GDQ method. Iranian Journal of Materials Science and Engineering, 17(4), 62-76. 2020.
[24] Nassireslami, E., Motififard, M., Kamyab Moghadas, B., Hami, Z., Jasemi, A., Lachiyani, A., ... & Khandan, A.. Potential of magnetite nanoparticles with biopolymers loaded with gentamicin drug for bone cancer treatment. Journal of Nanoanalysis. 2020.
[25] Khandan, A., Doozandeh, Z., & Saber-Samandari, S. Preparation of novel Arabic gum-C6H9NO biopolymer as a bedsore for wound care application. Acta Medica Iranica, 520-530. 2020.
[26] Mirsasaani, S. S., Bahrami, M., & Hemati, M. Effect of Argon laser Power Density and Filler content on Physico-mechanical properties of Dental nanocomposites. Bull. Env. Pharmacol. Life Sci, 5, 28-36. 2016.
[27] Sun, C., Yarmohammadi, A., Isfahani, R. B., Nejad, M. G., Toghraie, D., Fard, E. K., ... & Khandan, A. Self-healing polymers using electrosprayed microcapsules containing oil: Molecular dynamics simulation and experimental studies. Journal of Molecular Liquids, 325, 115182. 2021.
[28] Ghomi, F., Daliri, M., Godarzi, V., & Hemati, M. A novel investigation on characterization of bioactive glass cement and chitosan-gelatin membrane for jawbone tissue engineering. Journal of Nanoanalysis. 2021.
[29] Mirsasaani, S. S., Hemati, M., Dehkord, E. S., Yazdi, G. T., & Poshtiri, D. A.. Nanotechnology and nanobiomaterials in dentistry. In Nanobiomaterials in Clinical Dentistry (pp. 19-37). Elsevier. 2019.