تولید داربست نانوکامپوزیتی برپایه سلولزباکتریایی/نانوذرات اکسید روی/پلی پیرول با بررسی قابلیت ضدمیکروبی و سمیت سلولی

نوع مقاله : پژوهشی اصیل

نویسندگان

1 گروه مهندسی پزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی

2 گروه مهندسی پزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

3 مرکز تحقیق بیوتکنولوژی کاربردی، دانشگاه علوم پزشکی بقیه الله،

4 گروه مهندسی نفت و شیمی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی

چکیده
افزایش عفونت های باکتریایی به مشکلی جدی در جوامع بشری تبدیل شده است. براین اساس توسعه مواد نانوکامپوزیتی برپایه مواد زیست سازگار و بی خطر برای محیط زیست که علاوه بر قابلیت ضد میکروبی و زیست سازگاری یا عدم سمیت سلولی، خواص ساختاری منحصر بفردی نیز داشته باشد از اهمیت بالایی برخورداراست. در این پژوهش، سلولز باکتریایی (BC)/ پلی پیرول (PPy) و نانوذرات روی (ZnO) که همزمان دارای خواص ضدمیکروبی و قابلیت تکثیر سلولی باشند، به­عنوان نسل جدیدی از ایروژل نانوکامپوزیتی که به روش خشک کردن انجمادی تولید شدند، معرفی شد. بر این اساس ابتدا ZnO با درصدهای وزنی مختلف 1 %، 3 % و 5 % به BC اضافه شد و سپس PPy در مقدار mmol 2 به روش پلیمریزاسیون درجا در ساختار مذکور تعبیه شد. تصاویر FESEM اثبات کرد که ساختار نانولیفی و متخلخل BC، در حضور PPy و ZnO نیز حفظ شده است. هرچند بعد از افزودن PPy و ZnO ساختار متراکم شده و ریزساختار خوشه انگوری تشکیل دادند. با افزودن mmol 2 به BC و سنتز PPy، استحکام کششی و مدول یانگ BC به طور قابل توجهی کاهش یافته و به ترتیب به مقادیر MPa 71 و GPa 5/2 رسید. از سوی مقابل، با افزودن نانوذرات ZnO خواص مکانیکی افزایش قابل توجهی یافته (افزایش مدول یانگ و استحکام کششی در مقایسه با نمونه های BC/PPy) که این موضوع به دلیل فشرده شدن ساختار ایروژل نانوکامپوزیتی حاصل و همچنین تشکیل فصل مشترک نانوذرات ZnO با دو پلیمر BC و PPy است. مشاهده هاله و ناحیه ممانعت در محیط کشت حاوی دو باکتری گرم مثبت و منفی، به خوبی قابلیت ضدباکتریایی داربست­های نانوکامپوزیتی سه جزئی را اثبات کرد. نتایج MTT مربوط به L929 بر روی داربست­ها نشان داد که با افزودن 3 % از نانوذرات ZnO، چسبندگی و تکثیر سلولی در طی روزهای مختلف 1 روز، 5 روز و 7 روز از کشت افزایش قابل توجهی یافت.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Fabrication of nanocomposite scaffold based on bacterial cellulose/zinc oxide nanoparticles/polypyrrole with antibacterial and cytotoxicity assessment

نویسندگان English

Sharif Heydari 1
Azadeh Asefnejad 2
Nahid Hassanzadeh Nemati 1
Vahabodin Goodarzi 3
Ali Vaziri 4
1 Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University
2 Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
3 Applied Biotechnology Research Center, Baqiyatallah University of Medical Science, P.O.Box 19945-546
4 Petroleum and Chemical Engineering Department, Science and Research Branch, Islamic Azad University
چکیده English

The rise of bacterial infections has become a serious problem in human societies. As a result, the development of nanocomposite materials based on biocompatible and non-hazardous materials, besides having antimicrobial and biocompatibility or non-cytotoxicity, associated with unique structural properties, possesses a great importance. Research approach: In this study, bacterial cellulose (BC)/polypyrrole (PPy) and zinc nanoparticles (ZnO), which simultaneously have antimicrobial properties and cell proliferation, were introduced as a new generation of nanocomposite scaffolds produced by freeze-drying. To begin with, ZnO with different weight percentages of 1%, 3% and 5% was added to BC and then PPy in the amount of 2 mmol was embedded in the structure by in situ polymerization. FESEM images proved that the nanofibrous and porous structure of BC was also preserved in the presence of PPy and ZnO. However, after adding PPy and ZnO, they formed a dense structure and microstructure of grape clusters. By adding 2 mmol PPy into BC and upon in situ synthesizing, the tensile strength and Young modulus of BC were significantly reduced to 71 MPa and 2.5 GPa, respectively. On the other hand, with the addition of ZnO nanoparticles, the mechanical properties significantly increased (both of Young modulus and tensile strength compared to BC/PPy samples) due to the compaction of the nanocomposite aerogel’s structure and the formation of the interface of ZnO nanoparticles with both polymers of BC and PPy. The observation of the inhibition zone in the culture medium containing two gram-positive and negative bacteria, well proved the antibacterial ability of ternary nanocomposite scaffolds. The results of MT9 related to L929 on aerogels showed that by adding 3% of ZnO nanoparticles, adhesion and cell proliferation increased significantly during different days of 1 day, 5 days and 7 days of culture.

کلیدواژه‌ها English

Bacterial cellulose
Nanocomposite scaffolds
Polypyrrole
Zinc nanoparticles
Biocompatibility
[1] Ye S., Jiang L., Wu J., Su C., Huang C., Liu X. and Shao W., Flexible Amoxicillin-Grafted Bacterial Cellulose Sponges for Wound Dressing: In Vitro and in Vivo Evaluation, ACS Applied Materials & Interfaces, 10, 5862–5870, 2018.
[2] Fu F., Gu J., Xu X., Xiong Q., Zhang Y., Liu X. and Zhou J., Interfacial assembly of ZnO-cellulose nanocomposite films via a solution process: a one-step biomimetic approach and excellent photocatalytic properties, Cellulose, 24, 147–162, 2017.
[3] Wang P., Zhao J., Xuan R., Wang Y., Zou C., Zhang Z., Wan Y. and Xu Y., Flexible and monolithic zinc oxide bionanocomposite foams by a bacterial cellulose mediated approach for antibacterial applications, Dalton Transactions, 43, 6762–6768, 2014.
[4] Khalid A., Khan R., Ul-Islam M., Khan T. and Wahid F., Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds, Carbohydrate Polymers, 164, 214–221, 2017.
[5] ElNahrawy A.M., Haroun A.A., Hamadneh I., Al-Dujaili A.H. and Kamel S., Conducting cellulose/TiO2 composites by in situ polymerization of pyrrole, Carbohydrate Polymers, 168, 182–190, 2017.
[6] Wu X., Chabot V.L., Kim B.K., Yu A., Berry R.M. and Tam K.C., Cost-effective and Scalable Chemical Synthesis of Conductive Cellulose Nanocrystals for High-performance Supercapacitors, Electrochimca Acta, 138, 139–147, 2014.
[7] Shi Z., Gao H., Feng J., Ding B., Cao X., Kuga S., Wang Y., Zhang L. and Cai J., In Situ Synthesis of Robust Conductive Cellulose/Polypyrrole Composite Aerogels and Their Potential Application in Nerve Regeneration, Angewandte Chemie International Edition, 53(21), 5380–5384, 2014.
[8] Zhou S., Wang M., Chen X. and Xu F., Facile Template Synthesis of Microfibrillated Cellulose/Polypyrrole/Silver Nanoparticles Hybrid Aerogels with Electrical Conductive and Pressure Responsive Properties, ACS Sustainable Chemistry & Engineering, 3(12), 3346–3354, 2015.
[9] Ning C., Zhou Z., Tan G., Zhu Y. and Mao C., Electroactive polymers for tissue regeneration: Developments and perspectives, Progress in Polymer Science, 81, 144–162, 2018.
[10] Sannino A., Demitri C. and Madaghiele M., Biodegradable Cellulose-based Hydrogels: Design and Applications, Materials, 2(2), 353–373, 2009.
[11] نوری حسین آبادی, شهسواری, شاداب, وزیری یزدی, همتی, & آزاده. (2019). فرمولاسیون نانو الیاف پروتئینی کلاژن-سیکلودکسترین حاوی ذرات نانو رس با استفاده از فرآیند الکتروریسی. علوم و صنایع غذایی ایران, 16(88), 303-313.‎
[12] Hosseini H., Kokabi M. and Mousavi S.M., Conductive bacterial cellulose/multiwall carbon nanotubes nanocomposite aerogel as a potentially flexible lightweight strain sensor, Carbohydrate Polymers, 201, 228–235, 2018.
[13] Lay M., Méndez J.A., Delgado-Aguilar M., Bun K.N. and Vilaseca F., Strong and electrically conductive nanopaper from cellulose nanofibers and polypyrrole, Carbohydrate Polymers, 152, 361–369, 2016.
[14] Hosseini H., Kokabi M. and Mousavi S.M., Dynamic mechanical properties of bacterial cellulose nanofibres, Iranian Polymer Journal, 27, 433–443, 2018.
[15] Wan C. and Li J., Cellulose aerogels functionalized with polypyrrole and silver nanoparticles: In-situ synthesis, characterization and antibacterial activity, Carbohydrate Polymers, 146, 362–367, 2016.
[16] Picheth G.F., Pirich C.L., Sierakowski M.R., Woehl M.A, Sakakibara C.N., de Souza C.F., Martin A.A., da Silva. R. and de Freitas R.A., Bacterial cellulose in biomedical applications: A review, International Journal of Biological Macromolecules, 104, 97–106, 2017.
[17] Raisi, A., Asefnejad, A., Shahali, M., Doozandeh, Z., Kamyab Moghadas, B., Saber-Samandari, S., & Khandan, A.. A soft tissue fabricated using a freeze-drying technique with carboxymethyl chitosan and nanoparticles for promoting effects on wound healing. Journal of Nanoanalysis, 7(4), 262-274. 2022.
[18] Foroutan, S., Hashemian, M., Khosravi, M., Nejad, M. G., Asefnejad, A., Saber-Samandari, S., & Khandan, A. . A Porous Sodium Alginate-CaSiO 3 Polymer Reinforced with Graphene Nanosheet: Fabrication and Optimality Analysis. Fibers and Polymers, 22(2), 540-549. 2021.
[19] Raisi, A., Asefnejad, A., Shahali, M., Kazerouni, Z. A. S., Kolooshani, A., Saber Samandari, S., ... & Khandan, A.. Preparation, Characterization, and Antibacterial Studies of N, O carboxymethyl Chitosan as a Wound Dressing for Bedsore Application. Archives of Trauma Research¦ Volume XX¦ Issue XX¦ Month, 2. 2020.
[20] Jamnezhad, S., Asefnejad, A., Motififard, M., Yazdekhasti, H., Kolooshani, A., Saber-Samandari, S., & Khandan, A.. Development and investigation of novel alginate-hyaluronic acid bone fillers using freeze drying technique for orthopedic field. Nanomedicine Research Journal, 5(4), 306-315. 2020.
[21] Hosseini, S. M., Shahrousvand, M., Shojaei, S., Khonakdar, H. A., Asefnejad, A., & Goodarzi, V.. Preparation of superabsorbent eco-friendly semi-interpenetrating network based on cross-linked poly acrylic acid/xanthan gum/graphene oxide (PAA/XG/GO): Characterization and dye removal ability. International journal of biological macromolecules, 152, 884-893. 2020.
[22] Hosseini, H., Teymouri, M., Saboor, S., Khalili, A., Goodarzi, V., Hajipoor, F. P., ... & Bagheri, H.. Challenge between sequence presences of conductive additives on flexibility, dielectric and supercapacitance behaviors of nanofibrillated template of bacterial cellulose aerogels. European Polymer Journal, 115, 335-345. 2019.
[23] Foroutan, S., Hashemian, M., & Khandan, A.. A novel porous graphene scaffold prepared using Freeze-drying technique for orthopedic approaches: Fabrication and buckling simulation using GDQ method. Iranian Journal of Materials Science and Engineering, 17(4), 62-76. 2020.
[24] Nassireslami, E., Motififard, M., Kamyab Moghadas, B., Hami, Z., Jasemi, A., Lachiyani, A., ... & Khandan, A.. Potential of magnetite nanoparticles with biopolymers loaded with gentamicin drug for bone cancer treatment. Journal of Nanoanalysis. 2020.
[25] Khandan, A., Doozandeh, Z., & Saber-Samandari, S. Preparation of novel Arabic gum-C6H9NO biopolymer as a bedsore for wound care application. Acta Medica Iranica, 520-530. 2020.
[26] Mirsasaani, S. S., Bahrami, M., & Hemati, M. Effect of Argon laser Power Density and Filler content on Physico-mechanical properties of Dental nanocomposites. Bull. Env. Pharmacol. Life Sci, 5, 28-36. 2016.
[27] Sun, C., Yarmohammadi, A., Isfahani, R. B., Nejad, M. G., Toghraie, D., Fard, E. K., ... & Khandan, A. Self-healing polymers using electrosprayed microcapsules containing oil: Molecular dynamics simulation and experimental studies. Journal of Molecular Liquids, 325, 115182. 2021.
[28] Ghomi, F., Daliri, M., Godarzi, V., & Hemati, M. A novel investigation on characterization of bioactive glass cement and chitosan-gelatin membrane for jawbone tissue engineering. Journal of Nanoanalysis. 2021.
[29] Mirsasaani, S. S., Hemati, M., Dehkord, E. S., Yazdi, G. T., & Poshtiri, D. A.. Nanotechnology and nanobiomaterials in dentistry. In Nanobiomaterials in Clinical Dentistry (pp. 19-37). Elsevier. 2019.