پتانسیل‌سنجی منابع غیرخوراکی برای تولید بیودیزل در ایران

نوع مقاله : مروری تحلیلی

نویسندگان

1 گروه فرآیند، دانشکده مهندسی شیمی، دانشگاه تربیت مدرس، تهران، ایران

2 دانشکده مهندسی شیمی، دانشگاه تربیت مدرس

3 دانشیار، بخش تحقیقات مهندسی گلخانه، موسسه تحقیقات فنی و مهندسی کشاورزی، البرز، ایران

چکیده
ایران کشوری با پتانسیل‌های بالا در دسترسی به انرژی‌های تجدیدپذیر همانند انرژی خورشیدی، آبی، بادی و انواع زیست‌توده است. بیودیزل یکی از سوخت‌های تجدیدپذیری است که همواره به‌عنوان جایگزینی مناسب و پایدار (غیرسمی، ایمن و تجزیه­پذیر) برای سوخت‌های فسیلی مطرح ‌شده است. مرور تجربه کشور های مختلف در زمینه استفاده از منابع خوراکی برای تولید بیودیزل نشان می دهد که استفاده از منابع خوراکی موجب ایجاد معضلاتی از جمله کمبود منابع غذایی برای جوامع انسانی، کمبود خوراک دام‌ها و بر هم خوردن توازن در صنایع غذایی شده و می‌تواند منجر به افزایش چشم­گیر قیمت این منابع شود. بنابراین بسیاری از محققان و پژوهشگران استفاده از منابع غیرخوراکی را به‌منظور رفع معضلات ذکرشده، مطرح کرده‌اند. تاکنون منابع غیر خوراکی بسیار گسترده ای برای تولید بیودیزل شناسایی شده است. در این مقاله، منابع غیرخوراکی بیودیزل که در ایران تولید و یا پتانسیل تولید آن‌ها وجود دارد، معرفی شده و مورد بررسی قرار گرفته و یک مطالعه پتانسیل­سنجی برای آن‌ها ارایه شده است. در اینجا منابع غیرخوراکی بیودیزل در چهار دسته ضایعات کشاورزی، روغن‌های پسماند پخت‌وپز، ریزجلبک‌ها و دانه‌های غیرخوراکی دسته‌بندی می‌شوند و این منابع بر اساس پارامتر های مختلفی همچون درصد روغن موجود، میزان روغن در هر هکتار، راندمان تولید بیودیزل، ویسکوزیته، عدد صابونی شدن و طول دوره کشت مقایسه می گردد، که بر اساس نتایج به دست آمده، دانه‌های غیرخوراکی به خصوص دانه‌های نوروزک، کرچک و گلرنگ به‌عنوان منطقی‌ترین و پایدارترین منابع تولید بیودیزل در ایران، شناسایی شده‌اند. همچنین در کار حاضر به سیاست ها و مشوق هایی که نهاد های متولی می توانند جهت رونق صنعت بیودیزل اعمال نمایند، پرداخته شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Potential assessment of non-edible sources for biodiesel production in Iran

نویسندگان English

Mahmoud Maleki 1
Sina Mohseni Roudbari 1
Mohammad fakhroleslam 2
Ghasem Zarei 3
1 Process Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
2 Faculty of Chemical Engineering, Tarbiat Modares University
3 Department of Greenhouse Engineering Research, Research Institute of Agricultural Engineering, Alborz, Iran
چکیده English

Research subject: Iran is a country with high potentials for access to renewable energy sources such as solar, hydropower, wind, and biomass. Biodiesel is one of the renewable fuels that has always been proposed as a suitable and stable alternative (non-toxic, safe, and degradable) to fossil fuels.

Research approach: The experiences of different countries in the use of edible sources for biodiesel production shows that the use of edible sources has caused problems such as lack of food resources for human communities, lack of feed for livestock, and upsetting the balance in the food industry, and it can lead to a significant increase in the price of these resources. Therefore, many researchers have proposed the use of non-edible sources to address these problems. So far, very large non-edible sources for biodiesel production have been identified. In this paper, non-edible sources of biodiesel that are produced or have the potential to be produced in Iran are introduced and studied and a potential assessment study is presented for them.

Main results: In this work, the non-edible sources for biodiesel production are classified into four categories: agricultural waste, waste cooking oils, microalgae, and non-edible seeds. These sources are compared based on various parameters such as oil percentage, oil content per hectare, biodiesel production efficiency, viscosity, saponification number, and cultivation period, which according to the results, non-edible seeds, especially Nowruzak seeds, Castor, and safflower have been identified as the most rational and sustainable sources of biodiesel production in Iran. The present work also deals with the policies and incentives that the responsible institutions can apply for the prosperity of the biodiesel industry.

کلیدواژه‌ها English

biodiesel
Non-edible sources
Oilseeds
Renewable fuels
Potential assessment
[1] World Energy Council, World Energy Issues Monitor, London, 2017.
[2] Deputy of Research and Human Resources, Information Technology and Statistics Office, Monthly Report on Water and Electricity Industry Statistics in March 2017, Http://Isn.Moe.Gov.Ir/Getattachment/Eb0084de-962e-46aa-A95c-8269cec945c0/, avilable in 15 Jun 2019.
[3] Bakhoda H., Almassi M., Moharamnejad N. Moghaddasi R. and Azkia M., Energy Production Trend in Iran and its Effect on Sustainable Development, Renew. Sustain. Energy Rev., 16, 1335–1339, 2012.
[4] Hosseini S. E., Andwari A. M., Wahid M. A. and Bagheri G., A Review on Green Energy Potentials in Iran, Renew. Sustain. Energy Rev., 27, 533–545, 2013.
[5] Ghobadian B., Liquid Biofuels Potential and Outlook in Iran, Renew. Sustain. Energy Rev., 16, 4379–4384, 2012.
[6] Maleki M., Solvent Production of Biodiesel in a Semi-Industrial Micro-Reactor Pilot Using a Homogeneous Catalyst, Faculty of Energy, Bsc Thesis, Kermanshah University of Technology, September 2017.
[7] Buyukkaya E., Effects of Biodiesel on A DI Diesel Engine Performance, Emission And Combustion Characteristics, Fuel, 89, 3099–3105, 2010.
[8] Mohadesi M., Aghel B., Maleki M. and Ansari A., Biodiesel Production Using Recycled Edible Oil in a Micro Pilot, Fifth International Conference on Applied Research in Chemistry and Chemical Engineering With Emphasis on Iranian Indigenous Technologies, 2018.
[9] Brennan L. and Owende P., Biofuels from Microalgae—A Review of Technologies for Production, Processing, and Extractions of Biofuels and Co-Products, Renew. Sustain. Energy Rev., 14, 557–577, 2010.
[10] Obernberger I., Biedermann F., Widmann W. and Riedl R., Concentrations of Inorganic Elements in Biomass Fuels and Recovery in The Different Ash Fractions, Biomass And Bioenergy., 12, 211–224, 1997.
[11] Ambat I., Srivastava V. amd Sillanpää M., Recent Advancement in Biodiesel Production Methodologies Using Various Feedstock : A Review, Renew. Sustain. Energy Rev., 90, 356–369, 2018.
[12] Singh D., Sharma D., Soni S. L., Sharma S., Kumar Sharma P. and Jhalani A., A Review on Feedstocks, Production Processes, and Yield for Different Generations of Biodiesel, Fuel, 262, 116553, 2020.
[13] Madadi M., Abbas A. and Zahoor, Green Biodiesel Production Potential From Oil Seeds in Iran, Int. J. LIFE-SCIENCES Sci. Res., 3, 895–904, 2017.
[14] Nejad A. S. and Zahedi A. R., Optimization of Biodiesel Production as A Clean Fuel for Thermal Power Plants Using Renewable Energy Source, Renew. Energy., 119, 365–374, 2018.
[15] Somnuk K., Soysuwan N. and Prateepchaikul G., Continuous Process for Biodiesel Production From Palm Fatty Acid Distillate (PFAD) Using Helical Static Mixers as Reactors, Renew. Energy., 131, 100–110, 2018.
[16] Jindapon W. and Ngamcharussrivichai, C., Heterogeneously Catalyzed Transesterification of Palm Oil With Methanol to Produce Biodiesel Over Calcined Dolomite: The Role of Magnesium Oxide, Energy Convers. Manag., 171, 1311–1321, 2018.
[17] Xie W., Han Y. and Wang H., Magnetic Fe3O4 / MCM-41 Composite-Supported Sodium Silicate as Heterogeneous Catalysts for Biodiesel Production, Renew. Energy., 125, 675–681, 2018.
[18] Dehghani Soufi M., Ghobadian B., Atashgaran M., Mousavi S. M. and Najafi, G., Biolubricant Production From Edible and Novel Indigenous Vegetable Oils: Mainstream Methodology, and Prospects and Challenges in Iran, Biofuels, Bioprod. Biorefining., 13, 838–849, 2019.
[19] Mohammadi F., Rahimi M., Parvareh A., Feyzi M. and Faizi M., Biodiesel Production From Soybean Oil Using Ionic Liquid as A Catalyst in A Microreactor, Iran. J. Chem. Eng., 15, 102–114, 2018.
[20] López-Guajardo E., Ortiz-Nadal E., Montesinos-Castellanos A., Nigam D. P. K. and Nigam K. D. P., Process Intensification of Biodiesel Production Using A Tubular Micro-Reactor (TMR): Experimental and Numerical Assessment, Chem. Eng. Commun., 204, 557–563, 2015.
[21] Tran D. T., Chang J. S. and Lee D. J., Recent Insights Into Continuous-Flow Biodiesel Production Via Catalytic and Non-Catalytic Transesterification Processes, Appl. Energy., 185, 376–409, 2017.
[22] Lin L., Cunshan Z., Vittayapadung S., Xiangqian S. and Mingdong D., Opportunities and Challenges for Biodiesel Fuel, Appl. Energy., 88, 1020–1031, 2011.
[23] Demirbas A., Progress and Recent Trends in Biodiesel Fuels, Energy Convers. Manag., 50, 14–34, 2009.
[24] Enweremadu C. C. and Mbarawa M. M., Technical Aspects of Production and Analysis of Biodiesel from Used Cooking Oil—A Review, Renew. Sustain. Energy Rev., 13, 2205–2224, 2009.
[25] Issariyakul T. and Dalai A. K., Biodiesel From Vegetable Oils, Renew. Sustain. Energy Rev., 31, 446–471, 2014.
[26] Demirbas A., Bafail A., Ahmad W. and Sheikh M., Biodiesel Production From Non-Edible Plant Oils, Energy Explor. Exploit., 34, 290–318, 2016.
[27] Veljković V. B., Biberdžić M. O., Banković-Ilić I. B., Djalović I. G., Tasić M. B., Nježić Z. B. and Stamenković O. S., Biodiesel Production From Corn Oil: A Review, Renew. Sustain. Energy Rev., 91, 531–548, 2018.
[28] Maghami M., Sadrameli S. M. and Ghobadian B., Production of Biodiesel From Fishmeal Plant Waste Oil Using Ultrasonic and Conventional Methods, Appl. Therm. Eng., 75, 575–579, 2015.
[29] Alptekin E., Canakci M. and Sanli H., Biodiesel Production From Vegetable Oil and Waste Animal Fats in a Pilot Plant, Waste Manag., 34, 2146–21054, 2014.
[30] Šánek L., Pecha J., Kolomazník K. and Bařinová M., Pilot-Scale Production of Biodiesel From Waste Fats and Oils Using Tetramethylammonium Hydroxide, Waste Manag., 48, 630–637, 2016.
[31] Zhou D., Qiao B., Li G., Xue S. and Yin J., Continuous Production of Biodiesel From Microalgae by Extraction Coupling With Transesterification Under Supercritical Conditions, Bioresour. Technol., 238, 609–615, 2017.
[32] Wahidin S., Idris A., Yusof N. M., Kamis N. H. H. and Shaleh S. R. M., Optimization of The Ionic Liquid-Microwave Assisted One-Step Biodiesel Production Process From Wet Microalgal Biomass, Energy Convers. Manag., 171, 1397–1404, 2018
[33] Hidalgo P., Ciudad G., Schober S., Mittelbach M. and Navia R., Improving The FAME Yield of In Situ Transesterification From Microalgal Biomass Through Particle Size Reduction and Cosolvent Incorporation, Energy And Fuels., 29, 823–832, 2015.
[34] Borah M. J., Devi A., Saikia R. A. and Deka D., Biodiesel Production From Waste Cooking Oil Catalyzed By In-Situ Decorated Tio2 on Reduced Graphene Oxide Nanocomposite, Energy., 158, 881–889, 2018.
[35] Mohadesi M., Aghel B., Maleki M. and Ansari, A., The Use of KOH/Clinoptilolite Catalyst in Pilot of Microreactor for Biodiesel Production From Waste Cooking Oil, Fuel., 263, 116659, 2020.
[36] Mohadesi M., Aghel B., Maleki M. and Ansari A., Study of The Transesterification of Waste Cooking Oil for The Production of Biodiesel in A Microreactor Pilot: The Effect of Acetone as The Co-Solvent, Fuel., 273, 117736, 2020.
[37] Borah M. J., Devi A., Saikia R. A. and Deka, D., Biodiesel Production From Waste Cooking Oil Catalyzed by In-Situ Decorated Tio2 on Reduced Graphene Oxide Nanocomposite, Energy., 158, 881–889, 2018.
[38] Mohammadshirazi A., Akram A., Rafiee S. and Bagheri Kalhor E., Energy and Cost Analyses of Biodiesel Production From Waste Cooking Oil, Renew. Sustain. Energy Rev., 33, 44–49, 2014.
[39] Monteiro M. R., Kugelmeier C. L., Pinheiro R. S., Batalha M. O. and Da Silva César A., Glycerol From Biodiesel Production: Technological Paths for Sustainability, Renew. Sustain. Energy Rev., 88, 109–122, 2018.
[40] Srivastava A. and Prasad R., Triglycerides-Based Diesel Fuels Anjana, Renew. Sustain. Energy Rev., 4, 111–133, 2000.
[41] Go A. W., Sutanto S., Ong L. K., Tran-Nguyen P. L., Ismadji S. and Ju Y.-H., Developments in In-Situ (Trans) Esterification for Biodiesel Production: A Critical Review, Renew. Sustain. Energy Rev., 60, 284–305, 2016.
[42] Thakkar K., Shah K., Kodgire P. and Kachhwaha S. S., In-Situ Reactive Extraction of Castor Seeds for Biodiesel Production Using The Coordinated Ultrasound – Microwave Irradiation: Process Optimization and Kinetic Modeling, Ultrason. Sonochem., 50, 6–14, 2018.
[43] Keera S. T., Sabagh S. M., El and Taman A. R., Castor Oil Biodiesel Production and Optimization, Egypt. J. Pet., 2018
[44] Baskar G., Selvakumari I. A. E. and Aiswarya R., Biodiesel Production From Castor Oil Using Heterogeneous Ni Doped Zno Nanocatalyst, Bioresour. Technol., 250, 793–798, 2018.
[45] Chakrabarti M. H. and Ahmad R., Trans Esterification Studies on Castor Oil as A First Step Towards Its Use in Bio Diesel Production, Pakestan J. Bot., 40, 1153–1157, 2008.
[46] Meneghetti S. M. P., Meneghetti M. R., Wolf C. R., Silva E. C., Lima G. E. S., Coimbra M. D. A., Soletti J. I. and Carvalho S. H. V., Ethanolysis of Castor and Cottonseed Oil: A Systematic Study Using Classical Catalysts, J. Am. Oil Chem. Soc., 83, 819–822, 2006.
[47] Ahmad M., Khan M., Zafar M. and Sultana S., Practical Handbook on Biodiesel Production and Properties, 2012.
[48] Waraich E. A., Ahmed Z., Ahmad R., Yasin Ashraf M., Saifullah Naeem M. S. and Rengel Z., Camelina Sativa, A Climate Proof Crop, Has High Nutritive Value and Multiple-Uses: A Review, Aust. J. Crop Sci., 7, 1551–1559, 2013.
[49] Pilgeram A. L., Sands D. C., Boss D., Dale N., Wichman D., Lamb P., Lu C., Kirkpatrick M., Thompson B. and Johnson D. L., Camelina Sativa , A Montana Omega-3 and Fuel Crop, Proc. Sixth Natl. Symp. Creat. Mark. Econ. Dev. New Crop. New Uses., 129–131, 2007.
[50] Hoseini S., Najafi G., Ghobadian B., Yusaf T. and Ebadi M., The Effects of Camelina “Soheil” as A Novel Biodiesel Fuel on The Performance and Emission Characteristics of Diesel Engine, Appl. Sci., 8, 1010, 2018.
[51] General Office Of Cotton, Oilseeds, Industrial Plants And Tehran Rice Self-Sufficiency Plan, Criteria, Indicators And Standards For Oilseed Production, Tehran, 2010.
[52] Stenberg C., Svensson M. and Johansson M., A Study of The Drying of Linseed Oils With Different Fatty Acid Patterns Using Rtir-Spectroscopy and Chemiluminescence (Cl), Ind. Crops Prod., 21, 263–272, 2005.
[53] Hashemzadeh Gargari M. and Sadrameli S. M., Investigating Continuous Biodiesel Production From Linseed Oil in The Presence of A Co-Solvent and A Heterogeneous Based Catalyst in A Packed Bed Reactor, Energy., 148, 888–895, 2018.
[54] Taherkhani M. and Sadrameli S. M. M., An Improvement and Optimization Study of Biodiesel Production From Linseed Via In-Situ Transesterification Using A Co-Solvent, Renew. Energy., 119, 787–794, 2018.
[55] Austenfeld F., Nutrient Reserves of Salicomia Europaea Seeds, Physiol. Plant., 68, 446–450, 1986.
[56] Desai P. D., Dave A. M. and Devi S., Alcoholysis of Salicornia Oil Using Free and Covalently Bound Lipase on to Chitosan Beads, Food Chem., 95, 193–199, 2006.
[57] Ahmadi H., Norouzi J., Rahimi M. and Rahmatzade B., Extraction and Evaluation of Physicochemical Properties of Salicornia. Journal of Nutrition Science and Food Industry, 11(1):67-74, 2016.
[58] Patel M. K., Pandey S., Brahmbhatt H. R., Mishra A. and Jha B., Lipid Content and Fatty Acid Profile of Selected Halophytic Plants Reveal a Promising Source of Renewable Energy, Biomass And Bioenergy., 124:25–32, 2019.
[59] Bart J. C., Palmeri N. and Cavallaro S., Biodiesel Science And Technology From Soil To Oil. Anim. Genet., 2008.
[60] Safieddin Ardebili M., Ghobadian B., Najafi G. and Chegeni A., Biodiesel Production Potential From Edible Oil Seeds in Iran, Renew. Sustain. Energy Rev., 15, 3041–3044, 2011.
[61] Tahvildari K., Esmaeili S. and Mehrdad Sharif A. A., Studying Some Effective Parameters on Transesterification Reaction to Produce Biodiesel From Safflower Oil Article, Int. J. Agric. Crop Sci., 5, 292–297, 2013.
[62] Hormozgan is the second producer of aloe vera in the country, https://www.isna.ir/news/khalijefars-15282/, available in 31 Nov 2019.
[63] Isfahan Agricultural Jihad Organization, Statistics of Isfahan Chapter 4: Agriculture-Forestry-Fisheries, Isfahan, 2018.
[64] Mohammadi H., Mahdianmahforouzi M. and Ashoornejad Gh., Feasibility Study of Aloe Vera Cultivation in Bushehr Province, Geographical Studies of Arid Regions, 3(9-10): 1-17, 2012.
[65] Mohammadpour H., Sadrameli S. M., Eslami F. and Asoodeh, A., Industrial Crops & Products Optimization of Ultrasound-Assisted Extraction of Moringa Peregrina Oil With Response Surface Methodology and Comparison With Soxhlet Method, Ind. Crop. Prod., 131, 106–116, 2019.
[66] Tavares G. R., Massa T. B., Gonçalves J. E., Da Silva C. and Dos Santos W. D., Assessment of Ultrasound-Assisted Extraction of Crambe Seed Oil for Biodiesel Synthesis by In Situ Interesterification, Renew. Energy., 111, 659–665, 2017.
[67] Wang Y., Tang J., Chu C. and Tian J., A Preliminary Study on The Introduction and Cultivation of Crambe Abyssinica in China, an Oil Plant for Industrial Uses, Ind. Crops Prod., 12, 47–52, 2000.
[68] De Aguiar C. M., Santos K. A., Sampaio S. C. and Martin C. A., Crambe Abyssinica Hochst. Oil. In Fruit Oils, Chemistry And Functionality., 433-450, 2019.
[69] Encinar J. M., González J. F., Rodríguez J. J. and Tejedor A., Biodiesel Fuels From Vegetable Oils: Transesterification of Cynara C Ardunculus L. Oils With Ethanol, Energy & Fuels., 16, 443–450, 2002.
[70] National Forests And Rangelands Research Institute, Quantitative And Qualitative Identification of Active Ingredients of 553 Species of Iranian Medicinal and Aromatic Plants, 2015.
[71] Smartt, J. and Haq, N., Domestication, Production and Utilisation of New Crops. International Centre for Underutilised Crops, Southampton, 1997.
[72] Gholami A., Pourfayaz F., Hajinezhad A. and Mohadesi M., Biodiesel Production From Norouzak (Salvia Leriifolia) Oil Using Choline Hydroxide Catalyst in A Microchannel Reactor, Renew. Energy., 136, 993–1001, 2019.
[73] Hajinezhad A., Abedi S., Ghobadian B. and Noorollahi Y., Biodiesel Production From Norouzak (Salvia Lerifolia) Seeds as an Indigenous Source of Bio Fuel in Iran Using Ultrasound, Energy Convers. Manag., 99, 132–140, 2015.
[74] Hajinezhad A. and Katooli M. H., Study on Nutritional Values of a Novel Plant in Iran-Nowruzak- and Its Application in Producing Biofuels, Sustain. Chem. Pharm., 10, 112–117, 2018.
[75] Rathore M. and Meena R., Potential of Utilizing Calotropis Procera Flower Biomass as A Renewable Source of Energy, J. Phytol., 2, 78–83, 2010.
[76] Radhaboy G., Pugazhvadivu M., Ganeshan P. and Ramshankar P., Analysis of Thermo Chemical Behaviour of Calotropis Procera Parts for Their Potentiality, Int. J. Ambient Energy., 0, 1–7, 2019.
[77] Sobral H., Batista D. A., Borges D. M. J. and Da S., Evaluation of Thermally Treated Calotropis Procera Fiber for The Removal of Crude Oil on The Water Surface, Materials (Basel)., 12, 3894, 2019.
[78] Barbosa M. O., De Almeida-Cortez J. S., Da Silva S. I. and De Oliveira A. F. M., Seed Oil Content and Fatty Acid Composition From Different Populations of Calotropis Procera (Aiton) W. T. Aiton (Apocynaceae), J. Am. Oil Chem. Soc., 91, 1433–1441, 2014.
[79] Moosavi S. A., Aghaalikhani M., Ghobadian B. and Fayyazi, E., Okra: A Potential Future Bioenergy Crop in Iran, Renew. Sustain. Energy Rev., 93, 517–524, 2018.
[80] Jaliliantabar F., Ghobadian B., Carlucci A. P., Najafi G., Ficarella A., Strafella L., Santino A. and De Domenico S., Comparative Evaluation of Physical and Chemical Properties, Emission and Combustion Characteristics of Brassica, Cardoon and Coffee Based Biodiesels as Fuel in A Compression-Ignition Engine, Fuel., 222, 156–174, 2018.


[81] Mirmajidihashtjin A., Familmomen R. and Goudarzi F., Reducing Agricultural Waste The Main Strategy In Promoting Food Security, Agricultural Technical And Engineering Research Institute, Tehran, 2016.
[82] Karimi Alavijeh, M., Yaghmaei, S. 2016. Biochemical Production Of Bioenergy From Agricultural Crops And Residue In Iran. Waste Manag. 52:375–394.
[83] Mohadesi M., Aghel B., Maleki M. and Ansari A., Production of Biodiesel From Waste Cooking Oil Using a Homogeneous Catalyst: Study of Semi-Industrial Pilot of Microreactor, Renew. Energy., 136, 677–682, 2019.
[84] Tabatabaei M., Tohidfar M., Jouzani G. S., Safarnejad M. and Pazouki M., Biodiesel Production From Genetically Engineered Microalgae: Future of Bioenergy in Iran, Renew. Sustain. Energy Rev., 15, 1918–1927, 2011.
[85] Sharif Hossain, A. B. ., Salleh, A., Boyce, A. N., Chowdhury, P., Naqiuddin, M. 2008. Biodiesel Fuel Production From Algae As Renewable Energy. Am. J. Biochem. Biotechnol. 4:250–254.
[86] Akhavanmahdavi M., Gheshlaghi R. and Saghi, Gh., Wastewater Treatment and Biodiesel Production Using Microalgae from Municipal Wastewater on a Semi-Pilot Scale: a Case Study of Mashhad Wastewater, Iranian Journal of Chemistry and Chemical Engineering, 2018.
[87] Aghel B., Mohadesi M., Ansari A. and Maleki, M., Pilot-Scale Production of Biodiesel From Waste Cooking Oil Using Kettle Limescale as A Heterogeneous Catalyst, Renew. Energy., 142, 207–214, 2019.
[88] Ayat, N., Futurology of India, The Parliament of The Islamic Republic of Iran Publications, Tehran, 2019.

[89] Deputy Minister of Horticulture and Ministry of Jihad Agriculture, Https://Horticulture.Maj.Ir/, available in 18 Sep 2020.
[90] Behzadnasab, J., Evaluation of Performance and Conversion and Complementary Industries of The Ministry of Jihad-E-Agriculture in The Period of The Fourth and Fifth Economic, Social and Cultural Development Programs of Iran, Publications of The Ministry of Jihad and Agriculture, Tehran, 2017.
[91] Maleki A., Energy Policy, Sharif University of Technology, Tehran, 2011.
[92] Deputy of Infrastructure Research and Production Affairs., Investigation of Bioeconomy Development Policies in The World and Iran, Deputy of Infrastructure Research and New Technologies, Tehran, 2017.